Intracellular and Intercellular Mitochondrial Dynamics in Parkinson's Disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
31619944
PubMed Central
PMC6760022
DOI
10.3389/fnins.2019.00930
Knihovny.cz E-zdroje
- Klíčová slova
- Parkinson’s, alpha-synuclein, mitochondria, mitophagy, tunneling nanotube,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The appearance of alpha-synuclein-positive inclusion bodies (Lewy bodies) and the loss of catecholaminergic neurons are the primary pathological hallmarks of Parkinson's disease (PD). However, the dysfunction of mitochondria has long been recognized as a key component in the progression of the disease. Dysfunctional mitochondria can in turn lead to dysregulation of calcium homeostasis and, especially in dopaminergic neurons, raised mean intracellular calcium concentration. As calcium binding to alpha-synuclein is one of the important triggers of alpha-synuclein aggregation, mitochondrial dysfunction will promote inclusion body formation and disease progression. Increased reactive oxygen species (ROS) resulting from inefficiencies in the electron transport chain also contribute to the formation of alpha-synuclein aggregates and neuronal loss. Recent studies have also highlighted defects in mitochondrial clearance that lead to the accumulation of depolarized mitochondria. Transaxonal and intracytoplasmic translocation of mitochondria along the microtubule cytoskeleton may also be affected in diseased neurons. Furthermore, nanotube-mediated intercellular transfer of mitochondria has recently been reported between different cell types and may have relevance to the spread of PD pathology between adjacent brain regions. In the current review, the contributions of both intracellular and intercellular mitochondrial dynamics to the etiology of PD will be discussed.
CNC Center for Neuroscience and Cell Biology University of Coimbra Cantanhede Portugal
Institute of Biotechnology Czech Academy of Sciences Prague West Czechia
School of Medical Science Griffith University Southport QLD Australia
Zobrazit více v PubMed
Abounit S., Bousset L., Loria F., Zhu S., de Chaumont F., Pieri L., et al. (2016). Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes. PubMed DOI PMC
Ahmad T., Mukherjee S., Pattnaik B., Kumar M., Singh S., Kumar M., et al. (2014). Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. PubMed DOI PMC
Barsoum M. J., Yuan H., Gerencser A. A., Liot G., Kushnareva Y., Graber S., et al. (2006). Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. PubMed DOI PMC
Bartels T., Choi J., Selkoe D. (2011). α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. PubMed DOI PMC
Bayliss J., Lemus M., Santos V., Deo M., Davies J., Kemp B., et al. (2016). Metformin prevents nigrostriatal dopamine degeneration independent of AMPK activation in dopamine neurons. PubMed DOI PMC
Berridge M., Dong L., Neuzil J. (2015). Mitochondrial DNA in tumor initiation, progression, and metastasis: role of horizontal mtDNA transfer. PubMed DOI
Berridge M., McConnell M., Grasso C., Bajzikova M., Kovarova J., Neuzil J. (2016). Horizontal transfer of mitochondria between mammalian cells: beyond co-culture approaches. PubMed DOI
Burre J., Sharma M., Tsetsenis T., Buchman V., Etherton M., Sudhof T. (2010). α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. PubMed DOI PMC
Burte F., Carelli V., Chinnery P. F., Yu-Wai-Man P. (2015). Disturbed mitochondrial dynamics and neurodegenerative disorders. PubMed DOI
Cai Q., Gerwin C., Sheng Z. H. (2005). Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. PubMed DOI PMC
Celardo I., Martins L. M., Gandhi S. (2014). Unravelling mitochondrial pathways to Parkinson’s disease. PubMed DOI PMC
Chan D. C. (2012). Fusion and fission: interlinked processes critical for mitochondrial health. PubMed DOI
Chen C., Turnbull D. M., Reeve A. K. (2019). Mitochondrial dysfunction in Parkinson’s disease-cause or consequence? PubMed PMC
Chen Y., Sheng Z. H. (2013). Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. PubMed DOI PMC
Chu C. T. (2018). Multiple pathways for mitophagy: a neurodegenerative conundrum for Parkinson’ disease. PubMed DOI PMC
Chu C. T., Ji J., Dagda R. K., Jiang J. F., Tyurina Y. Y., Kapralov A. A., et al. (2013). Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. PubMed DOI PMC
Chu Y., Morfini G., Langhamer L., He Y., Brady S., Kordower J. (2012). Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. PubMed DOI PMC
Clark I. E., Dodson M. W., Jiang C., Cao J. H., Huh J. R., Seol J. H., et al. (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. PubMed DOI
Cole N. B., Dieuliis D., Leo P., Mitchell D. C., Nussbaum R. L. (2008). Mitochondrial translocation of alpha-synuclein is promoted by intracellular acidification. PubMed DOI PMC
Davis C., Kim K., Bushong E., Mills E., Boassa D., Shih T., et al. (2014). Transcellular degradation of axonal mitochondria. PubMed DOI PMC
Davis C., Xi Z. (2015). Horizontal gene transfer in parasitic plants. PubMed DOI
Dawson T. M., Dawson V. L. (2010). The role of parkin in familial and sporadic Parkinson’s disease. PubMed DOI PMC
Devi L., Raghavendran V., Prabhu B. M., Avadhani N. G., Anandatheerthavarada H. K. (2008). Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. PubMed DOI PMC
Di Maio R., Barrett P., Hoffman E., Barrett C., Zharikov A., Borah A., et al. (2016). α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. PubMed DOI PMC
Dieriks B., Park T., Fourie C., Faull R., Dragunow M., Curtis M. (2017). α-synuclein transfer through tunneling nanotubes occurs in SH-SY5Y cells and primary brain pericytes from Parkinson’s disease patients. PubMed PMC
Dong L., Kovarova J., Bajzikova M., Coelho A., Boukalova S., Rohlena J., et al. (2018). Horizontal transfer of mitochondria and dihydroorotate dehydrogenase function in respiration recovery of mtDNA deficient cancer cells.
Dorban G., Defaweux V., Heinen E., Antoine N. (2010). Spreading of prions from the immune to the peripheral nervous system: a potential implication of dendritic cells. PubMed DOI
Dorn G. W., II, Kitsis R. N. (2015). The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble. PubMed DOI PMC
El-Agnaf O., Salem S., Paleologou K., Curran M., Gibson M., Court J., et al. (2006). Detection of oligomeric forms of α-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. PubMed DOI
Fu J., Yu H., Chiu S., Mirando A., Maruyama E., Cheng J., et al. (2014). Disruption of SUMO-Specific Protease 2 induces mitochondria mediated neurodegeneration. PubMed DOI PMC
Fujiwara H., Hasegawa M., Dohmae N., Kawashima A., Masliah E., Goldberg M., et al. (2002). α-Synuclein is phosphorylated in synucleinopathy lesions. PubMed DOI
Gillardon F. (2009). Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability–a point of convergence in parkinsonian neurodegeneration? PubMed DOI
Godena V. K., Brookes-Hocking N., Moller A., Shaw G., Oswald M., Sancho R. M., et al. (2014). Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. PubMed DOI PMC
Gousset K., Schiff E., Langevin C., Marijanovic Z., Caputo A., Browman D., et al. (2009). Prions hijack tunnelling nanotubes for intercellular spread. PubMed DOI
Grassi D., Howard S., Zhou M., Diaz-Perez N., Urban N., Guerrero-Given D., et al. (2018). Identification of a highly neurotoxic α-synuclein species inducing mitochondrial damage and mitophagy in Parkinson’s disease. PubMed PMC
Grossmann D., Berenguer-Escuder C., Bellet M. E., Scheibner D., Bohler J., Massart F. (2019). Mutations in RHOT1 disrupt ER-mitochondria contact sites interfering with calcium homeostasis and mitochondrial dynamics in Parkinson’s disease. PubMed DOI PMC
Guo C., Hildick K. L., Luo J., Dearden L., Wilkinson K. A., Henley J. M. (2013). SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. PubMed DOI PMC
Guo C., Wilkinson K. A., Evans A. J., Rubin P. P., Henley J. M. (2017). SENP3-mediated deSUMOylation of Drp1 facilitates interaction with Mff to promote cell death. PubMed DOI PMC
Hase K., Kimura S., Takatsu H., Ohmae M., Kawano S., Kitamura H., et al. (2009). M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. PubMed DOI
Henley J. M., Carmichael R. E., Wilkinson K. A. (2018). Extranuclear SUMOylation in Neurons. PubMed DOI
Hirokawa N., Niwa S., Tanaka Y. (2010). Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. PubMed DOI
Islam M. N., Das S. R., Emin M. T., Wei M., Sun L., Westphalen K., et al. (2012). Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. PubMed DOI PMC
Ismaiel A. A., Espinosa-Oliva A. M., Santiago M., García-Quintanilla A., Oliva-Martín M. J., Herrera A. J., et al. (2016). Metformin, besides exhibiting strong PubMed DOI
Jayaprakash A. D., Benson E. K., Gone S., Liang R., Shim J., Lambertini L., et al. (2015). Stable heteroplasmy at the single-cell level is facilitated by intercellular exchange of mtDNA. PubMed DOI PMC
Kamp F., Exner N., Lutz A. K., Wender N., Hegermann J., Brunner B., et al. (2010). Inhibition of mitochondrial fusion by alpha-synuclein is rescued by PINK1. Parkin and DJ-1. PubMed DOI PMC
Keeling P., Palmer J. (2008). Horizontal gene transfer in eukaryotic evolution. PubMed DOI
Kimura S., Hase K., Ohno H. (2012). Tunneling nanotubes: Emerging view of their molecular components and formation mechanisms. PubMed DOI
Korobova F., Ramabhadran V., Higgs H. N. (2013). An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. PubMed DOI PMC
Kumar A., Tamjar J., Waddell A., Woodroof H., Raimi O., Shaw A., et al. (2017). Structure of PINK1 and mechanisms of Parkinson’ disease-associated mutations. PubMed PMC
Langley M., Ghosh A., Charli A., Sarkar S., Ay M., Luo J., et al. (2017). Mito-apocynin prevents mitochondrial dysfunction, microglial activation, oxidative damage, and progressive neurodegeneration in mitopark transgenic mice. PubMed DOI PMC
Lee K. S., Huh S., Lee S., Wu Z., Kim A. K., Kang H. Y., et al. (2018). Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models. PubMed DOI PMC
Lin M., Cantuti-Castelvetri I., Zheng K., Jackson K., Tan Y., Arzberger T., et al. (2012). Somatic mitochondrial DNA mutations in early parkinson and incidental lewy body disease. PubMed DOI PMC
Lin M. Y., Sheng Z. H. (2015). Regulation of mitochondrial transport in neurons. PubMed DOI PMC
Liu S., Sawada T., Lee S., Yu W., Silverio G., Alapatt P., et al. (2012). Parkinson’s disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PubMed DOI PMC
Lonskaya I., Hebron M., Algarzae N., Desforges N., Moussa C. (2013). Decreased parkin solubility is associated with impairment of autophagy in the nigrostriatum of sporadic Parkinson’s disease. PubMed DOI PMC
Lu M., Su C., Qiao C., Bian Y., Ding J., Hu G. (2016). Metformin prevents dopaminergic neuron death in MPTP/P-induced mouse model of parkinson’s disease via autophagy and mitochondrial ROS clearance. PubMed PMC
MacAskill A., Kittler J. (2010). Control of mitochondrial transport and localization in neurons. PubMed DOI
MacAskill A., Rinholm J., Twelvetrees A., Arancibia-Carcamo I., Muir J., Fransson A., et al. (2009). Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. PubMed DOI PMC
Martinez-Vicente M. (2017). Neuronal mitophagy in neurodegenerative diseases. PubMed DOI PMC
Mata I. F., Lockhart P. J., Farrer M. J. (2004). Parkin genetics: one model for Parkinson’s disease. PubMed
McCann H., Stevens C., Cartwright H., Halliday G. (2014). α-Synucleinopathy phenotypes. PubMed
McLeary F. A., Rcom-H’cheo-Gauthier A. N., Goulding M., Radford R. A. W., Okita Y., Faller P., et al. (2019). Switching on Endogenous metal binding proteins in Parkinson’s Disease. PubMed DOI PMC
Meissner C., Lorenz H., Hehn B., Lemberg M. K. (2015). Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy. PubMed DOI PMC
Melkov A., Abdu U. (2018). Regulation of long-distance transport of mitochondria along microtubules. PubMed DOI PMC
Melo T. Q., Van Zomeren K. C., Ferrari M. F., Boddeke H. W., Copray J. C. (2017). Impairment of mitochondria dynamics by human A53T alpha-synuclein and rescue by NAP (davunetide) in a cell model for Parkinson’s disease. PubMed DOI PMC
Morfini G., Pigino G., Opalach K., Serulle Y., Moreira J. E., Sugimori M., et al. (2007). 1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C. PubMed DOI PMC
Nemani N., Carvalho E., Tomar D., Dong Z., Ketschek A., Breves S. L. (2018). MIRO-1 determines mitochondrial shape transition upon GPCR activation and Ca2+ Stress. PubMed DOI PMC
O’Donnell K. C., Lulla A., Stahl M. C., Wheat N. D., Bronstein J. M., Sagasti A. (2014). Axon degeneration and PGC-1alpha-mediated protection in a zebrafish model of alpha-synuclein toxicity. PubMed DOI PMC
Pagliuso A., Cossart P., Stavru F. (2018). The ever-growing complexity of the mitochondrial fission machinery. PubMed DOI PMC
Patil S., Jain P., Ghumatkar P., Tambe R., Sathaye S. (2014). Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice. PubMed DOI
Perfeito R., Cunha-Oliveira T., Rego A. C. (2013). Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse. PubMed DOI
Pozo Devoto V. M., Falzone T. L. (2017). Mitochondrial dynamics in Parkinson’s disease: a role for alpha-synuclein? PubMed DOI PMC
Prots I., Grosch J., Brazdis R., Simmnacher K., Veber V., Havlicek S., et al. (2018). α-Synuclein oligomers induce early axonal dysfunction in human iPSC-based models of synucleinopathies. PubMed DOI PMC
Prots I., Veber V., Brey S., Campioni S., Buder K., Riek R., et al. (2013). Alpha-synuclein oligomers impair neuronal microtubule-kinesin interplay. PubMed DOI PMC
Prusiner S., Woerman A., Mordes D., Watts J., Rampersaud R., Berry D., et al. (2015). Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. PubMed PMC
Rcom-H’cheo-Gauthier A. N., Meedeniya A. C., Pountney D. L. (2017). Calcipotriol inhibits α-synuclein aggregation in SH-SY5Y neuroblastoma cells by a Calbindin-D28k-dependent mechanism. PubMed DOI
Rcom-H’cheo-Gauthier A. N., Osborne S., Meedeniya A., Pountney D. (2016). Calcium: alpha-synuclein interactions in alpha-synucleinopathies. PubMed DOI PMC
Reeve A., Ludtmann M., Angelova P., Simcox E., Horrocks M., Klenerman D., et al. (2015). Aggregated α-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons. PubMed DOI PMC
Reynolds A., Glanzer J., Kadiu I., Ricardo-Dukelow M., Chaudhuri A., Ciborowski P., et al. (2008). Nitrated alpha-synuclein-activated microglial profiling for Parkinson’s disease. PubMed DOI
Rodolfo C., Campello S., Cecconi F. (2018). Mitophagy in neurodegenerative diseases. PubMed DOI
Rogers R., Bhatacharya J. (2013). When cells become organelle donors. PubMed DOI
Rostami J., Holmqvist S., Lindström V., Sigvardson J., Westermark G., Ingelsson M., et al. (2017). Human astrocytes transfer aggregated alpha-synuclein via tunneling nanotubes. PubMed DOI PMC
Rustom A. (2016). The missing link: does tunnelling nanotube-based supercellularity provide a new understanding of chronic and lifestyle diseases? PubMed DOI PMC
Rustom A., Saffrich R., Markovic I., Walther P., Gerdes H. H. (2004). Nanotubular highways for intercellular organelle transport. PubMed DOI
Saotome M., Safiulina D., Szabadkai G., Das S., Fransson A., Aspenstrom P., et al. (2008). Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. PubMed DOI PMC
Schiller C., Diakopoulos K., Rohwedder I., Kremmer E., von Toerne C., Ueffing M., et al. (2013). LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation. PubMed DOI
Shaltouki A., Hsieh C., Kim M., Wang X. (2018). Alpha-synuclein delays mitophagy and targeting Miro rescues neuron loss in Parkinson’s models. PubMed DOI PMC
Sheng Z. H. (2017). The Interplay of axonal energy homeostasis and mitochondrial trafficking and anchoring. PubMed DOI PMC
Shirihai O. S., Song M., Dorn G. W., II (2015). How mitochondrial dynamism orchestrates mitophagy. PubMed DOI PMC
Shlevkov E., Kramer T., Schapansky J., LaVoie M., Schwarz T. (2016). Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility. PubMed PMC
Shults C. W. (2006). Lewy bodies. PubMed PMC
Sinha P., Islam M., Bhattacharya S., Bhattacharya J. (2016). Intercellular mitochondrial transfer: bioenergetic crosstalk between cells. PubMed DOI PMC
Spees J., Olson S., Whitney M., Prockop D. (2006). Mitochondrial transfer between cells can rescue aerobic respiration. PubMed DOI PMC
Steiner J., Quansah E., Brundin P. (2018). The concept of alpha-synuclein as a prion-like protein: ten years after. PubMed DOI PMC
Sulzer D., Edwards R. H. (2019). The physiological role of α-synuclein and its relationship to Parkinson’s Disease. PubMed DOI PMC
Suzuki S., Akamatsu W., Kisa F., Sone T., Ishikawa K. I., Kuzumaki N., et al. (2017). Efficient induction of dopaminergic neuron differentiation from induced pluripotent stem cells reveals impaired mitophagy in PARK2 neurons. PubMed DOI
Tan A., Baty J., Dong L., Bezawork-Geleta A., Endaya B., Goodwin J., et al. (2015). Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. PubMed DOI
Tas R. P., Kapitein L. C. (2018). Exploring cytoskeletal diversity in neurons. PubMed DOI
Thakur P., Chiu W. H., Roeper J., Goldberg J. A. (2019). α-Synuclein 2.0 — Moving towards Cell Type Specific Pathophysiology. PubMed DOI
Theillet F., Binolfi A., Bekei B., Martorana A., Rose H., Stuiver M., et al. (2016). Structural disorder of monomeric α-synuclein persists in mammalian cells. PubMed DOI
Thomas K. J., Mccoy M. K., Blackinton J., Beilina A., Van Der Brug M., Sandebring A., et al. (2011). DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. PubMed DOI PMC
Tilokani L., Nagashima S., Paupe V., Prudent J. (2018). Mitochondrial dynamics: overview of molecular mechanisms. PubMed DOI PMC
Valdinocci D., Radford R., Siow S., Chung R., Pountney D. (2017). Potential modes of intercellular α-synuclein transmission. PubMed DOI PMC
Valente E. M., Bentivoglio A. R., Dixon P. H., Ferraris A., Ialongo T., Frontali M., et al. (2001). Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. PubMed DOI PMC
Vijayakumaran S., Pountney D. L. (2018). SUMOylation, aging and autophagy in neurodegeneration. PubMed DOI
Vijayakumaran S., Wong M. B., Antony H., Pountney D. L. (2015). Direct and/or indirect roles for SUMO in modulating alpha-synuclein toxicity. PubMed DOI PMC
Wang X., Becker K., Levine N., Zhang M., Lieberman A., Moore D., et al. (2019). Pathogenic alpha-synuclein aggregates preferentially bind to mitochondria and affect cellular respiration. PubMed DOI PMC
Wang X., Gerdes H. H. (2015). Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. PubMed DOI PMC
Wang X., Schwarz T. (2009). The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. PubMed DOI PMC
Wang X., Su B., Liu W., He X., Gao Y., Castellani R. J., et al. (2011a). DLP1-dependent mitochondrial fragmentation mediates 1-methyl-4-phenylpyridinium toxicity in neurons: implications for Parkinson’s disease. PubMed DOI PMC
Wang X., Winter D., Ashrafi G., Schlehe J., Wong Y., Selkoe D., et al. (2011b). PINK1 and parkin target miro for phosphorylation and degradation to arrest mitochondrial motility. PubMed DOI PMC
Winslow A. R., Chen C. W., Corrochano S., Acevedo-Arozena A., Gordon D. E., Peden A. A., et al. (2010). Alpha-Synuclein impairs macroautophagy: implications for Parkinson’s disease. PubMed DOI PMC
Xi Y., Feng D., Tao K., Wang R., Shi Y., Qin H., et al. (2018). MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1α. PubMed DOI
Xie W., Chung K. K. (2012). Alpha-synuclein impairs normal dynamics of mitochondria in cell and animal models of Parkinson’s disease. PubMed DOI
Yoshii S. R., Mizushima N. (2015). Autophagy machinery in the context of mammalian mitophagy. PubMed DOI
Zala D., Hinckelmann M. V., Yu H., Lyra Da Cunha M. M., Liot G., Cordelieres F. P., et al. (2013). Vesicular glycolysis provides on-board energy for fast axonal transport. PubMed DOI
Zilocchi M., Finzi G., Lualdi M., Sessa F., Fasano M., Alberio T. (2018). Mitochondrial alterations in Parkinson’s disease human samples and cellular models. PubMed DOI
Alpha-Synuclein Aggregates Associated with Mitochondria in Tunnelling Nanotubes