Intracellular and Intercellular Mitochondrial Dynamics in Parkinson's Disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
31619944
PubMed Central
PMC6760022
DOI
10.3389/fnins.2019.00930
Knihovny.cz E-zdroje
- Klíčová slova
- Parkinson’s, alpha-synuclein, mitochondria, mitophagy, tunneling nanotube,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The appearance of alpha-synuclein-positive inclusion bodies (Lewy bodies) and the loss of catecholaminergic neurons are the primary pathological hallmarks of Parkinson's disease (PD). However, the dysfunction of mitochondria has long been recognized as a key component in the progression of the disease. Dysfunctional mitochondria can in turn lead to dysregulation of calcium homeostasis and, especially in dopaminergic neurons, raised mean intracellular calcium concentration. As calcium binding to alpha-synuclein is one of the important triggers of alpha-synuclein aggregation, mitochondrial dysfunction will promote inclusion body formation and disease progression. Increased reactive oxygen species (ROS) resulting from inefficiencies in the electron transport chain also contribute to the formation of alpha-synuclein aggregates and neuronal loss. Recent studies have also highlighted defects in mitochondrial clearance that lead to the accumulation of depolarized mitochondria. Transaxonal and intracytoplasmic translocation of mitochondria along the microtubule cytoskeleton may also be affected in diseased neurons. Furthermore, nanotube-mediated intercellular transfer of mitochondria has recently been reported between different cell types and may have relevance to the spread of PD pathology between adjacent brain regions. In the current review, the contributions of both intracellular and intercellular mitochondrial dynamics to the etiology of PD will be discussed.
CNC Center for Neuroscience and Cell Biology University of Coimbra Cantanhede Portugal
Institute of Biotechnology Czech Academy of Sciences Prague West Czechia
School of Medical Science Griffith University Southport QLD Australia
Zobrazit více v PubMed
Abounit S., Bousset L., Loria F., Zhu S., de Chaumont F., Pieri L., et al. (2016). Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes. EMBO J. 35 2120–2138. 10.15252/embj.201593411 PubMed DOI PMC
Ahmad T., Mukherjee S., Pattnaik B., Kumar M., Singh S., Kumar M., et al. (2014). Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 33 994–1010. 10.1002/embj.201386030 PubMed DOI PMC
Barsoum M. J., Yuan H., Gerencser A. A., Liot G., Kushnareva Y., Graber S., et al. (2006). Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J. 25 3900–3911. 10.1038/sj.emboj.7601253 PubMed DOI PMC
Bartels T., Choi J., Selkoe D. (2011). α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477 107–110. 10.1038/nature10324 PubMed DOI PMC
Bayliss J., Lemus M., Santos V., Deo M., Davies J., Kemp B., et al. (2016). Metformin prevents nigrostriatal dopamine degeneration independent of AMPK activation in dopamine neurons. PLoS One 11:e0159381. 10.1371/journal.pone.0159381 PubMed DOI PMC
Berridge M., Dong L., Neuzil J. (2015). Mitochondrial DNA in tumor initiation, progression, and metastasis: role of horizontal mtDNA transfer. Cancer Res. 75 3203–3208. 10.1158/0008-5472.CAN-15-0859 PubMed DOI
Berridge M., McConnell M., Grasso C., Bajzikova M., Kovarova J., Neuzil J. (2016). Horizontal transfer of mitochondria between mammalian cells: beyond co-culture approaches. Curr. Opin. Genet. Dev. 38 75–82. 10.1016/j.gde.2016.04.003 PubMed DOI
Burre J., Sharma M., Tsetsenis T., Buchman V., Etherton M., Sudhof T. (2010). α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329 1663–1667. 10.1126/science.1195227 PubMed DOI PMC
Burte F., Carelli V., Chinnery P. F., Yu-Wai-Man P. (2015). Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 11 11–24. 10.1038/nrneurol.2014.228 PubMed DOI
Cai Q., Gerwin C., Sheng Z. H. (2005). Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. J. Cell Biol. 170 959–969. 10.1083/jcb.200506042 PubMed DOI PMC
Celardo I., Martins L. M., Gandhi S. (2014). Unravelling mitochondrial pathways to Parkinson’s disease. Br. J. Pharmacol. 171 1943–1957. 10.1111/bph.12433 PubMed DOI PMC
Chan D. C. (2012). Fusion and fission: interlinked processes critical for mitochondrial health. Annu. Rev. Genet. 46 265–287. 10.1146/annurev-genet-110410-132529 PubMed DOI
Chen C., Turnbull D. M., Reeve A. K. (2019). Mitochondrial dysfunction in Parkinson’s disease-cause or consequence? Biology 8:E38. PubMed PMC
Chen Y., Sheng Z. H. (2013). Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J. Cell Biol. 202 351–364. 10.1083/jcb.201302040 PubMed DOI PMC
Chu C. T. (2018). Multiple pathways for mitophagy: a neurodegenerative conundrum for Parkinson’ disease. Neurosci. Lett. 697 66–71. 10.1016/j.neulet.2018.04.004 PubMed DOI PMC
Chu C. T., Ji J., Dagda R. K., Jiang J. F., Tyurina Y. Y., Kapralov A. A., et al. (2013). Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15 1197–1205. 10.1038/ncb2837 PubMed DOI PMC
Chu Y., Morfini G., Langhamer L., He Y., Brady S., Kordower J. (2012). Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain 135 2058–2073. 10.1093/brain/aws133 PubMed DOI PMC
Clark I. E., Dodson M. W., Jiang C., Cao J. H., Huh J. R., Seol J. H., et al. (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441 1162–1166. 10.1038/nature04779 PubMed DOI
Cole N. B., Dieuliis D., Leo P., Mitchell D. C., Nussbaum R. L. (2008). Mitochondrial translocation of alpha-synuclein is promoted by intracellular acidification. Exp. Cell Res. 314 2076–2089. 10.1016/j.yexcr.2008.03.012 PubMed DOI PMC
Davis C., Kim K., Bushong E., Mills E., Boassa D., Shih T., et al. (2014). Transcellular degradation of axonal mitochondria. Proc. Natl. Acad. Sci. U.S.A. 111 9633–9638. 10.1073/pnas.1404651111 PubMed DOI PMC
Davis C., Xi Z. (2015). Horizontal gene transfer in parasitic plants. Curr. Opin. Plant Biol. 26 14–19. 10.1016/j.pbi.2015.05.008 PubMed DOI
Dawson T. M., Dawson V. L. (2010). The role of parkin in familial and sporadic Parkinson’s disease. Mov. Disord. 25(Suppl. 1), S32–S39. 10.1002/mds.22798 PubMed DOI PMC
Devi L., Raghavendran V., Prabhu B. M., Avadhani N. G., Anandatheerthavarada H. K. (2008). Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J. Biol. Chem. 283 9089–9100. 10.1074/jbc.M710012200 PubMed DOI PMC
Di Maio R., Barrett P., Hoffman E., Barrett C., Zharikov A., Borah A., et al. (2016). α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci. Trans. Med. 8:342ra78. 10.1126/scitranslmed.aaf3634 PubMed DOI PMC
Dieriks B., Park T., Fourie C., Faull R., Dragunow M., Curtis M. (2017). α-synuclein transfer through tunneling nanotubes occurs in SH-SY5Y cells and primary brain pericytes from Parkinson’s disease patients. Sci. Rep. 7:42984. PubMed PMC
Dong L., Kovarova J., Bajzikova M., Coelho A., Boukalova S., Rohlena J., et al. (2018). Horizontal transfer of mitochondria and dihydroorotate dehydrogenase function in respiration recovery of mtDNA deficient cancer cells. Free Radic. Biol. Med. 120 S53–S54.
Dorban G., Defaweux V., Heinen E., Antoine N. (2010). Spreading of prions from the immune to the peripheral nervous system: a potential implication of dendritic cells. Histochem. Cell Biol. 133 493–504. 10.1007/s00418-010-0687-9 PubMed DOI
Dorn G. W., II, Kitsis R. N. (2015). The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble. Circ. Res. 116 167–182. 10.1161/CIRCRESAHA.116.303554 PubMed DOI PMC
El-Agnaf O., Salem S., Paleologou K., Curran M., Gibson M., Court J., et al. (2006). Detection of oligomeric forms of α-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J. 20 419–425. 10.1096/fj.03-1449com PubMed DOI
Fu J., Yu H., Chiu S., Mirando A., Maruyama E., Cheng J., et al. (2014). Disruption of SUMO-Specific Protease 2 induces mitochondria mediated neurodegeneration. PLoS Genet. 10:e1004579. 10.1371/journal.pgen.1004579 PubMed DOI PMC
Fujiwara H., Hasegawa M., Dohmae N., Kawashima A., Masliah E., Goldberg M., et al. (2002). α-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol. 4 160–164. 10.1038/ncb748 PubMed DOI
Gillardon F. (2009). Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability–a point of convergence in parkinsonian neurodegeneration? J. Neurochem. 110 1514–1522. 10.1111/j.1471-4159.2009.06235.x PubMed DOI
Godena V. K., Brookes-Hocking N., Moller A., Shaw G., Oswald M., Sancho R. M., et al. (2014). Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat. Commun. 5:5245. 10.1038/ncomms6245 PubMed DOI PMC
Gousset K., Schiff E., Langevin C., Marijanovic Z., Caputo A., Browman D., et al. (2009). Prions hijack tunnelling nanotubes for intercellular spread. Nat. Cell Biol. 11 328–336. 10.1038/ncb1841 PubMed DOI
Grassi D., Howard S., Zhou M., Diaz-Perez N., Urban N., Guerrero-Given D., et al. (2018). Identification of a highly neurotoxic α-synuclein species inducing mitochondrial damage and mitophagy in Parkinson’s disease. Proc. Natl. Acad. Sci. U.S.A. 115 E2634–E2643. PubMed PMC
Grossmann D., Berenguer-Escuder C., Bellet M. E., Scheibner D., Bohler J., Massart F. (2019). Mutations in RHOT1 disrupt ER-mitochondria contact sites interfering with calcium homeostasis and mitochondrial dynamics in Parkinson’s disease. Antioxid. Redox Signal. 10.1089/ars.2018.7718 [Epub ahead of print]. PubMed DOI PMC
Guo C., Hildick K. L., Luo J., Dearden L., Wilkinson K. A., Henley J. M. (2013). SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. EMBO J. 32 1514–1528. 10.1038/emboj.2013.65 PubMed DOI PMC
Guo C., Wilkinson K. A., Evans A. J., Rubin P. P., Henley J. M. (2017). SENP3-mediated deSUMOylation of Drp1 facilitates interaction with Mff to promote cell death. Sci. Rep. 7:43811. 10.1038/srep43811 PubMed DOI PMC
Hase K., Kimura S., Takatsu H., Ohmae M., Kawano S., Kitamura H., et al. (2009). M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat. Cell Biol. 11 1427–1432. 10.1038/ncb1990 PubMed DOI
Henley J. M., Carmichael R. E., Wilkinson K. A. (2018). Extranuclear SUMOylation in Neurons. Trends Neurosci. 41 198–210. 10.1016/j.tins.2018.02.004 PubMed DOI
Hirokawa N., Niwa S., Tanaka Y. (2010). Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68 610–638. 10.1016/j.neuron.2010.09.039 PubMed DOI
Islam M. N., Das S. R., Emin M. T., Wei M., Sun L., Westphalen K., et al. (2012). Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 18 759–765. 10.1038/nm.2736 PubMed DOI PMC
Ismaiel A. A., Espinosa-Oliva A. M., Santiago M., García-Quintanilla A., Oliva-Martín M. J., Herrera A. J., et al. (2016). Metformin, besides exhibiting strong in vivo anti-inflammatory properties, increases mptp-induced damage to the nigrostriatal dopaminergic system. Toxicol. Appl. Pharmacol. 298 19–30. 10.1016/j.taap.2016.03.004 PubMed DOI
Jayaprakash A. D., Benson E. K., Gone S., Liang R., Shim J., Lambertini L., et al. (2015). Stable heteroplasmy at the single-cell level is facilitated by intercellular exchange of mtDNA. Nucleic. Acids Res. 43 2177–2187. 10.1093/nar/gkv052 PubMed DOI PMC
Kamp F., Exner N., Lutz A. K., Wender N., Hegermann J., Brunner B., et al. (2010). Inhibition of mitochondrial fusion by alpha-synuclein is rescued by PINK1. Parkin and DJ-1. EMBO J. 29 3571–3589. 10.1038/emboj.2010.223 PubMed DOI PMC
Keeling P., Palmer J. (2008). Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9 605–618. 10.1038/nrg2386 PubMed DOI
Kimura S., Hase K., Ohno H. (2012). Tunneling nanotubes: Emerging view of their molecular components and formation mechanisms. Exp. Cell Res. 318 1699–1706. 10.1016/j.yexcr.2012.05.013 PubMed DOI
Korobova F., Ramabhadran V., Higgs H. N. (2013). An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339 464–467. 10.1126/science.1228360 PubMed DOI PMC
Kumar A., Tamjar J., Waddell A., Woodroof H., Raimi O., Shaw A., et al. (2017). Structure of PINK1 and mechanisms of Parkinson’ disease-associated mutations. eLife. 6: e29985 PubMed PMC
Langley M., Ghosh A., Charli A., Sarkar S., Ay M., Luo J., et al. (2017). Mito-apocynin prevents mitochondrial dysfunction, microglial activation, oxidative damage, and progressive neurodegeneration in mitopark transgenic mice. Antioxid. Redox Signal. 27 1048–1066. 10.1089/ars.2016.6905 PubMed DOI PMC
Lee K. S., Huh S., Lee S., Wu Z., Kim A. K., Kang H. Y., et al. (2018). Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models. Proc. Natl. Acad. Sci. U.S.A. 115 E8844–E8853. 10.1073/pnas.1721136115 PubMed DOI PMC
Lin M., Cantuti-Castelvetri I., Zheng K., Jackson K., Tan Y., Arzberger T., et al. (2012). Somatic mitochondrial DNA mutations in early parkinson and incidental lewy body disease. Ann. Neurol. 71 850–854. 10.1002/ana.23568 PubMed DOI PMC
Lin M. Y., Sheng Z. H. (2015). Regulation of mitochondrial transport in neurons. Exp. Cell Res. 334 35–44. 10.1016/j.yexcr.2015.01.004 PubMed DOI PMC
Liu S., Sawada T., Lee S., Yu W., Silverio G., Alapatt P., et al. (2012). Parkinson’s disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet. 8:e1002537. 10.1371/journal.pgen.1002537 PubMed DOI PMC
Lonskaya I., Hebron M., Algarzae N., Desforges N., Moussa C. (2013). Decreased parkin solubility is associated with impairment of autophagy in the nigrostriatum of sporadic Parkinson’s disease. Neuroscience 232 90–105. 10.1016/j.neuroscience.2012.12.018 PubMed DOI PMC
Lu M., Su C., Qiao C., Bian Y., Ding J., Hu G. (2016). Metformin prevents dopaminergic neuron death in MPTP/P-induced mouse model of parkinson’s disease via autophagy and mitochondrial ROS clearance. Int. J. Neuropsychopharmacol. 19:yw047. PubMed PMC
MacAskill A., Kittler J. (2010). Control of mitochondrial transport and localization in neurons. Trends Cell Biol. 20 102–112. 10.1016/j.tcb.2009.11.002 PubMed DOI
MacAskill A., Rinholm J., Twelvetrees A., Arancibia-Carcamo I., Muir J., Fransson A., et al. (2009). Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61 541–555. 10.1016/j.neuron.2009.01.030 PubMed DOI PMC
Martinez-Vicente M. (2017). Neuronal mitophagy in neurodegenerative diseases. Front. Mol. Neurosci. 10:64 10.3389/fnmol.2017.00064 PubMed DOI PMC
Mata I. F., Lockhart P. J., Farrer M. J. (2004). Parkin genetics: one model for Parkinson’s disease. Hum. Mol. Genet. 13 R127–R133. PubMed
McCann H., Stevens C., Cartwright H., Halliday G. (2014). α-Synucleinopathy phenotypes. Parkinsonism Relat. Disord. 20 S62–S67. PubMed
McLeary F. A., Rcom-H’cheo-Gauthier A. N., Goulding M., Radford R. A. W., Okita Y., Faller P., et al. (2019). Switching on Endogenous metal binding proteins in Parkinson’s Disease. Cells 8:E179. 10.3390/cells8020179 PubMed DOI PMC
Meissner C., Lorenz H., Hehn B., Lemberg M. K. (2015). Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy. Autophagy 11 1484–1498. 10.1080/15548627.2015.1063763 PubMed DOI PMC
Melkov A., Abdu U. (2018). Regulation of long-distance transport of mitochondria along microtubules. Cell. Mol. Life Sci. 75 163–176. 10.1007/s00018-017-2590-1 PubMed DOI PMC
Melo T. Q., Van Zomeren K. C., Ferrari M. F., Boddeke H. W., Copray J. C. (2017). Impairment of mitochondria dynamics by human A53T alpha-synuclein and rescue by NAP (davunetide) in a cell model for Parkinson’s disease. Exp. Brain Res. 235 731–742. 10.1007/s00221-016-4836-9 PubMed DOI PMC
Morfini G., Pigino G., Opalach K., Serulle Y., Moreira J. E., Sugimori M., et al. (2007). 1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C. Proc. Natl. Acad. Sci. U.S.A. 104 2442–2447. 10.1073/pnas.0611231104 PubMed DOI PMC
Nemani N., Carvalho E., Tomar D., Dong Z., Ketschek A., Breves S. L. (2018). MIRO-1 determines mitochondrial shape transition upon GPCR activation and Ca2+ Stress. Cell Rep. 24 1005–1019. 10.1016/j.celrep.2018.03.098 PubMed DOI PMC
O’Donnell K. C., Lulla A., Stahl M. C., Wheat N. D., Bronstein J. M., Sagasti A. (2014). Axon degeneration and PGC-1alpha-mediated protection in a zebrafish model of alpha-synuclein toxicity. Dis. Mod. Mech. 7 571–582. 10.1242/dmm.013185 PubMed DOI PMC
Pagliuso A., Cossart P., Stavru F. (2018). The ever-growing complexity of the mitochondrial fission machinery. Cell. Mol. Life Sci. 75 355–374. 10.1007/s00018-017-2603-0 PubMed DOI PMC
Patil S., Jain P., Ghumatkar P., Tambe R., Sathaye S. (2014). Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice. Neuroscience 277 747–754. 10.1016/j.neuroscience.2014.07.046 PubMed DOI
Perfeito R., Cunha-Oliveira T., Rego A. C. (2013). Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse. Free Radic. Biol. Med. 62 186–201. 10.1016/j.freeradbiomed.2013.05.042 PubMed DOI
Pozo Devoto V. M., Falzone T. L. (2017). Mitochondrial dynamics in Parkinson’s disease: a role for alpha-synuclein? Dis. Mod. Mech. 10 1075–1087. 10.1242/dmm.026294 PubMed DOI PMC
Prots I., Grosch J., Brazdis R., Simmnacher K., Veber V., Havlicek S., et al. (2018). α-Synuclein oligomers induce early axonal dysfunction in human iPSC-based models of synucleinopathies. Proc. Natl. Acad. Sci. U.S.A. 115 7813–7818. 10.1073/pnas.1713129115 PubMed DOI PMC
Prots I., Veber V., Brey S., Campioni S., Buder K., Riek R., et al. (2013). Alpha-synuclein oligomers impair neuronal microtubule-kinesin interplay. J. Biol. Chem. 288 21742–21754. 10.1074/jbc.M113.451815 PubMed DOI PMC
Prusiner S., Woerman A., Mordes D., Watts J., Rampersaud R., Berry D., et al. (2015). Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc. Natl. Acad. Sci. U.S.A. 112 E5308–E5317. PubMed PMC
Rcom-H’cheo-Gauthier A. N., Meedeniya A. C., Pountney D. L. (2017). Calcipotriol inhibits α-synuclein aggregation in SH-SY5Y neuroblastoma cells by a Calbindin-D28k-dependent mechanism. J. Neurochem. 141 263–274. 10.1111/jnc.13971 PubMed DOI
Rcom-H’cheo-Gauthier A. N., Osborne S., Meedeniya A., Pountney D. (2016). Calcium: alpha-synuclein interactions in alpha-synucleinopathies. Front. Neurosci. 10:570. 10.3389/fnins.2016.00570 PubMed DOI PMC
Reeve A., Ludtmann M., Angelova P., Simcox E., Horrocks M., Klenerman D., et al. (2015). Aggregated α-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons. Cell Death Dis. 6 e1820–e1820. 10.1038/cddis.2015.166 PubMed DOI PMC
Reynolds A., Glanzer J., Kadiu I., Ricardo-Dukelow M., Chaudhuri A., Ciborowski P., et al. (2008). Nitrated alpha-synuclein-activated microglial profiling for Parkinson’s disease. J. Neurochem. 104 1504–1525. 10.1111/j.1471-4159.2007.05087.x PubMed DOI
Rodolfo C., Campello S., Cecconi F. (2018). Mitophagy in neurodegenerative diseases. Neurochem. Int. 117 156–166. 10.1016/j.neuint.2017.08.004 PubMed DOI
Rogers R., Bhatacharya J. (2013). When cells become organelle donors. Physiology 28 414–422. 10.1152/physiol.00032.2013 PubMed DOI
Rostami J., Holmqvist S., Lindström V., Sigvardson J., Westermark G., Ingelsson M., et al. (2017). Human astrocytes transfer aggregated alpha-synuclein via tunneling nanotubes. J. Neurosci. 37 11835–11853. 10.1523/JNEUROSCI.0983-17.2017 PubMed DOI PMC
Rustom A. (2016). The missing link: does tunnelling nanotube-based supercellularity provide a new understanding of chronic and lifestyle diseases? Open Biol. 6:160057. 10.1098/rsob.160057 PubMed DOI PMC
Rustom A., Saffrich R., Markovic I., Walther P., Gerdes H. H. (2004). Nanotubular highways for intercellular organelle transport. Science 303 1007–1010. 10.1126/science.1093133 PubMed DOI
Saotome M., Safiulina D., Szabadkai G., Das S., Fransson A., Aspenstrom P., et al. (2008). Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc. Natl. Acad. Sci. U.S.A. 105 20728–20733. 10.1073/pnas.0808953105 PubMed DOI PMC
Schiller C., Diakopoulos K., Rohwedder I., Kremmer E., von Toerne C., Ueffing M., et al. (2013). LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation. J. Cell Sci. 126 767–777. 10.1242/jcs.114033 PubMed DOI
Shaltouki A., Hsieh C., Kim M., Wang X. (2018). Alpha-synuclein delays mitophagy and targeting Miro rescues neuron loss in Parkinson’s models. Acta Neuropathol. 136 607–620. 10.1007/s00401-018-1873-4 PubMed DOI PMC
Sheng Z. H. (2017). The Interplay of axonal energy homeostasis and mitochondrial trafficking and anchoring. Trends Cell Biol. 27 403–416. 10.1016/j.tcb.2017.01.005 PubMed DOI PMC
Shirihai O. S., Song M., Dorn G. W., II (2015). How mitochondrial dynamism orchestrates mitophagy. Circ. Res. 116 1835–1849. 10.1161/CIRCRESAHA.116.306374 PubMed DOI PMC
Shlevkov E., Kramer T., Schapansky J., LaVoie M., Schwarz T. (2016). Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility. Proc. Natl. Acad. Sci. U.S.A. 113 E6097–E6106. PubMed PMC
Shults C. W. (2006). Lewy bodies. Proc. Natl. Acad. Sci. U.S.A. 103 1661–1668. PubMed PMC
Sinha P., Islam M., Bhattacharya S., Bhattacharya J. (2016). Intercellular mitochondrial transfer: bioenergetic crosstalk between cells. Curr. Opin. Genet. Dev. 38 97–101. 10.1016/j.gde.2016.05.002 PubMed DOI PMC
Spees J., Olson S., Whitney M., Prockop D. (2006). Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl. Acad. Sci. U.S.A. 103 1283–1288. 10.1073/pnas.0510511103 PubMed DOI PMC
Steiner J., Quansah E., Brundin P. (2018). The concept of alpha-synuclein as a prion-like protein: ten years after. Cell Tissue Res. 373 161–173. 10.1007/s00441-018-2814-1 PubMed DOI PMC
Sulzer D., Edwards R. H. (2019). The physiological role of α-synuclein and its relationship to Parkinson’s Disease. J. Neurochem. 150 475–486. 10.1111/jnc.14810 PubMed DOI PMC
Suzuki S., Akamatsu W., Kisa F., Sone T., Ishikawa K. I., Kuzumaki N., et al. (2017). Efficient induction of dopaminergic neuron differentiation from induced pluripotent stem cells reveals impaired mitophagy in PARK2 neurons. Biochem. Biophys. Res. Commun. 483 88–93. 10.1016/j.bbrc.2016.12.188 PubMed DOI
Tan A., Baty J., Dong L., Bezawork-Geleta A., Endaya B., Goodwin J., et al. (2015). Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 21 81–94. 10.1016/j.cmet.2014.12.003 PubMed DOI
Tas R. P., Kapitein L. C. (2018). Exploring cytoskeletal diversity in neurons. Science 361 231–232. 10.1126/science.aat5992 PubMed DOI
Thakur P., Chiu W. H., Roeper J., Goldberg J. A. (2019). α-Synuclein 2.0 — Moving towards Cell Type Specific Pathophysiology. Neuroscience 412 248–256. 10.1016/j.neuroscience.2019.06.005 PubMed DOI
Theillet F., Binolfi A., Bekei B., Martorana A., Rose H., Stuiver M., et al. (2016). Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530 45–50. 10.1038/nature16531 PubMed DOI
Thomas K. J., Mccoy M. K., Blackinton J., Beilina A., Van Der Brug M., Sandebring A., et al. (2011). DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum. Mol. Genet. 20 40–50. 10.1093/hmg/ddq430 PubMed DOI PMC
Tilokani L., Nagashima S., Paupe V., Prudent J. (2018). Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. 62 341–360. 10.1042/EBC20170104 PubMed DOI PMC
Valdinocci D., Radford R., Siow S., Chung R., Pountney D. (2017). Potential modes of intercellular α-synuclein transmission. Int. J. Mol. Sci. 18 E469. 10.3390/ijms18020469 PubMed DOI PMC
Valente E. M., Bentivoglio A. R., Dixon P. H., Ferraris A., Ialongo T., Frontali M., et al. (2001). Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am. J. Hum. Genet. 68 895–900. 10.1086/319522 PubMed DOI PMC
Vijayakumaran S., Pountney D. L. (2018). SUMOylation, aging and autophagy in neurodegeneration. Neurotoxicology. 66 53–57. 10.1016/j.neuro.2018.02.015 PubMed DOI
Vijayakumaran S., Wong M. B., Antony H., Pountney D. L. (2015). Direct and/or indirect roles for SUMO in modulating alpha-synuclein toxicity. Biomolecules. 5 1697–1716. 10.3390/biom5031697 PubMed DOI PMC
Wang X., Becker K., Levine N., Zhang M., Lieberman A., Moore D., et al. (2019). Pathogenic alpha-synuclein aggregates preferentially bind to mitochondria and affect cellular respiration. Acta Neuropathol. Commun. 7:41. 10.1186/s40478-019-0696-4 PubMed DOI PMC
Wang X., Gerdes H. H. (2015). Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death. Differ. 22 1181–1191. 10.1038/cdd.2014.211 PubMed DOI PMC
Wang X., Schwarz T. (2009). The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136 163–174. 10.1016/j.cell.2008.11.046 PubMed DOI PMC
Wang X., Su B., Liu W., He X., Gao Y., Castellani R. J., et al. (2011a). DLP1-dependent mitochondrial fragmentation mediates 1-methyl-4-phenylpyridinium toxicity in neurons: implications for Parkinson’s disease. Aging Cell 10 807–823. 10.1111/j.1474-9726.2011.00721.x PubMed DOI PMC
Wang X., Winter D., Ashrafi G., Schlehe J., Wong Y., Selkoe D., et al. (2011b). PINK1 and parkin target miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147 893–906. 10.1016/j.cell.2011.10.018 PubMed DOI PMC
Winslow A. R., Chen C. W., Corrochano S., Acevedo-Arozena A., Gordon D. E., Peden A. A., et al. (2010). Alpha-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J. Cell Biol. 190 1023–1037. 10.1083/jcb.201003122 PubMed DOI PMC
Xi Y., Feng D., Tao K., Wang R., Shi Y., Qin H., et al. (2018). MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1α. Biochim. Biophys. Acta BBA Mol. Basis Dis. 1864 2859–2870. 10.1016/j.bbadis.2018.05.018 PubMed DOI
Xie W., Chung K. K. (2012). Alpha-synuclein impairs normal dynamics of mitochondria in cell and animal models of Parkinson’s disease. J. Neurochem. 122 404–414. 10.1111/j.1471-4159.2012.07769.x PubMed DOI
Yoshii S. R., Mizushima N. (2015). Autophagy machinery in the context of mammalian mitophagy. Biochim. Biophys. Acta 853 2797–2801. 10.1016/j.bbamcr.2015.01.013 PubMed DOI
Zala D., Hinckelmann M. V., Yu H., Lyra Da Cunha M. M., Liot G., Cordelieres F. P., et al. (2013). Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152 479–491. 10.1016/j.cell.2012.12.029 PubMed DOI
Zilocchi M., Finzi G., Lualdi M., Sessa F., Fasano M., Alberio T. (2018). Mitochondrial alterations in Parkinson’s disease human samples and cellular models. Neurochem. Int. 118 61–72. 10.1016/j.neuint.2018.04.013 PubMed DOI
Alpha-Synuclein Aggregates Associated with Mitochondria in Tunnelling Nanotubes