AIMS: Endoplasmic reticulum stress followed by the unfolded protein response is one of the cellular mechanisms contributing to the progression of α-synuclein pathology in Parkinson's disease and other Lewy body diseases. We aimed to investigate the activation of endoplasmic reticulum stress and its correlation with α-synuclein pathology in human post-mortem brain tissue. METHODS: We analysed brain tissue from 45 subjects-14 symptomatic patients with Lewy body disease, 19 subjects with incidental Lewy body disease, and 12 healthy controls. The analysed brain regions included the medulla, pons, midbrain, striatum, amygdala and entorhinal, temporal, frontal and occipital cortex. We analysed activation of endoplasmic reticulum stress via levels of the unfolded protein response-related proteins (Grp78, eIF2α) and endoplasmic reticulum stress-regulating neurotrophic factors (MANF, CDNF). RESULTS: We showed that regional levels of two endoplasmic reticulum-localised neurotrophic factors, MANF and CDNF, did not change in response to accumulating α-synuclein pathology. The concentration of MANF negatively correlated with age in specific regions. eIF2α was upregulated in the striatum of Lewy body disease patients and correlated with increased α-synuclein levels. We found the upregulation of chaperone Grp78 in the amygdala and nigral dopaminergic neurons of Lewy body disease patients. Grp78 levels in the amygdala strongly correlated with soluble α-synuclein levels. CONCLUSIONS: Our data suggest a strong but regionally specific change in Grp78 and eIF2α levels, which positively correlates with soluble α-synuclein levels. Additionally, MANF levels decreased in dopaminergic neurons in the substantia nigra. Our research suggests that endoplasmic reticulum stress activation is not associated with Lewy pathology but rather with soluble α-synuclein concentration and disease progression.
- MeSH
- alfa-synuklein * metabolismus MeSH
- biologické markery metabolismus MeSH
- chaperon endoplazmatického retikula BiP * metabolismus MeSH
- demence s Lewyho tělísky * patologie metabolismus MeSH
- eukaryotický iniciační faktor 2 * metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mozek metabolismus patologie MeSH
- neurotrofní faktory metabolismus MeSH
- proteiny tepelného šoku * metabolismus MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- signální dráha UPR * fyziologie MeSH
- stres endoplazmatického retikula fyziologie MeSH
- upregulace * MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Accumulation of alpha-synuclein (α-syn) is central to the pathogenesis of Parkinson's disease (PD). Previous studies suggest that α-syn pathology may originate from the olfactory bulb (OB) or gut in response to an unknown pathogen and later progress to the different brain regions. Aging is viewed as the utmost threat to PD development. Therefore, studies depicting the role of age in α-syn accumulation and its progression in PD are important. In the present study, we gave intranasal rotenone microemulsion for 6 weeks in 12-month-old female BALB/c mice and found olfactory dysfunction after 4 and 6 weeks of rotenone administration. Interestingly, motor impairment was observed only after 6 weeks. The animals were sacrificed after 6 weeks to perform western blotting and immunohistochemical studies to detect α-syn pathology, neuroinflammation and neurodegeneration. We found α-syn accumulation in OB, striatum, substantia nigra (SN) and cortex. Importantly, we found significant glial cell activation and neurodegeneration in all the analysed regions which were absent in our previous published studies with 3 months old mice even after they were exposed to rotenone for 9 weeks indicating age is a crucial factor for α-syn induced neuroinflammation and neurodegeneration. We also observed increased iron accumulation in SN of rotenone-exposed aged mice. Moreover, inflammaging was observed in OB and striatum of 12-month-old BALB/c mice as compared to 3-month-old BALB/c mice. In conclusion, there is a difference in sensitivity between adult and aged mice in the development and progression of α-syn pathology and subsequent neurodegeneration, for which inflammaging might be the crucial probable mechanism.
- MeSH
- alfa-synuklein * metabolismus MeSH
- dopamin MeSH
- dopaminergní neurony metabolismus MeSH
- modely nemocí na zvířatech MeSH
- mozek metabolismus MeSH
- myši MeSH
- neurozánětlivé nemoci MeSH
- Parkinsonova nemoc * patologie MeSH
- rotenon toxicita MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Parkinson's disease is characterized by the selective death of dopaminergic neurons in the midbrain and accumulation of amyloid fibrils composed of α-synuclein (αSyn). Current treatment involves approaches that compensate the death of dopaminergic neurons by increasing the dopamine levels in remaining cells. However, dopamine can interact with αSyn and produce oligomeric species which were reported to be toxic in many models. We studied formation of dopamine-induced αSyn oligomers and their effect on the αSyn aggregation. Using the Thioflavin T kinetic assay, we have shown that small oligomers efficiently inhibit αSyn fibrillization by binding to fibril ends and blocking the elongation. Moreover, all the fractions of oligomer species proved to be nontoxic in the differentiated SH-SY5Y cell model and showed negligible neurotoxicity on isolated rat synaptosomes. The observed inhibition is an important insight in understanding of dopamine-enhancing therapy on Parkinson's disease progression and explains the absence of pathology enhancement.
- MeSH
- alfa-synuklein metabolismus MeSH
- amyloid metabolismus MeSH
- dopamin chemie MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- neuroblastom * MeSH
- Parkinsonova nemoc * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In the rat model, 6-hydroxydopamine (6-OHDA) known as a selective catecholaminergic neurotoxin used chiefly in modeling Parkinson's disease (PD). Continuous aerobic exercise and curcumin supplementations could play a vital role in neuroprotection. This study aimed to explore the neuroprotective roles of regular aerobic exercise and curcumin during PD. For this, rats were treated as follows for 8 consecutive weeks (5 d in a week): For this, animals were orally treated with curcumin (50 ml/kg) alone or in combination with aerobic exercise. Compared with a control group, induction of PD by 6-OHDA increased the amount of alpha-synuclein protein and malondialdehyde levels and decreased the number of substantia nigra neurons, total antioxidant capacity, and glutathione peroxidase activity in brain tissue. All these changes were abolished by the administration of curcumin with aerobic exercise treatments. Activity behavioral tests also confirmed the above-mentioned results by increasing the rod test time and the number of rotations due to apomorphine injection. Histopathology assays mimic the antioxidant activity and behavioral observations. Combined curcumin with aerobic exercise treatments is potentially an effective strategy for modifying the dopaminergic neuron dysfunction in 6-OHDA-induced rats modeling PD via dual inhibiting oxidative stress indices and regulating behavioral tasks.
- MeSH
- alfa-synuklein metabolismus MeSH
- antioxidancia metabolismus farmakologie MeSH
- apomorfin metabolismus farmakologie MeSH
- glutathionperoxidasa metabolismus MeSH
- krysa rodu rattus MeSH
- kurkumin * metabolismus farmakologie MeSH
- malondialdehyd MeSH
- modely nemocí na zvířatech MeSH
- neuroprotektivní látky * farmakologie MeSH
- neurotoxické syndromy * MeSH
- neurotoxiny metabolismus farmakologie MeSH
- oxidopamin toxicita MeSH
- Parkinsonova nemoc * farmakoterapie metabolismus MeSH
- substantia nigra MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Multiple System Atrophy is a rare neurodegenerative disease with alpha-synuclein aggregation in glial cytoplasmic inclusions and either predominant olivopontocerebellar atrophy or striatonigral degeneration, leading to dysautonomia, parkinsonism, and cerebellar ataxia. One prior genome-wide association study in mainly clinically diagnosed patients with Multiple System Atrophy failed to identify genetic variants predisposing for the disease. OBJECTIVE: Since the clinical diagnosis of Multiple System Atrophy yields a high rate of misdiagnosis when compared to the neuropathological gold standard, we studied only autopsy-confirmed cases. METHODS: We studied common genetic variations in Multiple System Atrophy cases (N = 731) and controls (N = 2898). RESULTS: The most strongly disease-associated markers were rs16859966 on chromosome 3, rs7013955 on chromosome 8, and rs116607983 on chromosome 4 with P-values below 5 × 10-6 , all of which were supported by at least one additional genotyped and several imputed single nucleotide polymorphisms. The genes closest to the chromosome 3 locus are ZIC1 and ZIC4 encoding the zinc finger proteins of cerebellum 1 and 4 (ZIC1 and ZIC4). INTERPRETATION: Since mutations of ZIC1 and ZIC4 and paraneoplastic autoantibodies directed against ZIC4 are associated with severe cerebellar dysfunction, we conducted immunohistochemical analyses in brain tissue of the frontal cortex and the cerebellum from 24 Multiple System Atrophy patients. Strong immunohistochemical expression of ZIC4 was detected in a subset of neurons of the dentate nucleus in all healthy controls and in patients with striatonigral degeneration, whereas ZIC4-immunoreactive neurons were significantly reduced inpatients with olivopontocerebellar atrophy. These findings point to a potential ZIC4-mediated vulnerability of neurons in Multiple System Atrophy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
- MeSH
- alfa-synuklein metabolismus MeSH
- autoprotilátky MeSH
- celogenomová asociační studie MeSH
- lidé MeSH
- multisystémová atrofie * genetika patologie MeSH
- olivopontocerebelární atrofie * MeSH
- pitva MeSH
- proteiny nervové tkáně genetika MeSH
- striatonigrální degenerace * MeSH
- transkripční faktory genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Advanced research in health science has broadened our view in approaching and understanding the pathophysiology of diseases and has also revolutionised diagnosis and treatment. Ever since the establishment of Braak's hypothesis in the propagation of alpha-synuclein from the distant olfactory and enteric nervous system towards the brain in Parkinson's Disease (PD), studies have explored and revealed the involvement of altered gut microbiota in PD. This review recapitulates the gut microbiome associated with PD severity, duration, motor and non-motor symptoms, and antiparkinsonian treatment from recent literature. Gut microbial signatures in PD are potential predictors of the disease and are speculated to be used in early diagnosis and treatment. In brief, the review also emphasises on implications of the prebiotic, probiotic, faecal microbiota transplantation, and dietary interventions as alternative treatments in modulating the disease symptoms in PD.
- MeSH
- alfa-synuklein metabolismus MeSH
- antiparkinsonika MeSH
- lidé MeSH
- mozek MeSH
- Parkinsonova nemoc * terapie MeSH
- střevní mikroflóra * fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Parkinson's disease (PD) is an α-synucleinopathy characterized by the progressive loss of specific neuronal populations. Here, we develop a novel approach to transvascularly deliver proteins of complex quaternary structures, including α-synuclein preformed fibrils (pff). We show that a single systemic administration of α-synuclein pff triggers pathological transformation of endogenous α-synuclein in non-transgenic rats, which leads to neurodegeneration in discrete brain regions. Specifically, pff-exposed animals displayed a progressive deterioration in gastrointestinal and olfactory functions, which corresponded with the presence of cellular pathology in the central and enteric nervous systems. The α-synuclein pathology generated was both time dependent and region specific. Interestingly, the most significant neuropathological changes were observed in those brain regions affected in the early stages of PD. Our data therefore demonstrate for the first time that a single, transvascular administration of α-synuclein pff can lead to selective regional neuropathology resembling the premotor stage of idiopathic PD. Furthermore, this novel delivery approach could also be used to deliver a range of other pathogenic, as well as therapeutic, protein cargos transvascularly to the brain.
Aggregation of small neuronal protein α-synuclein (αSyn) in amyloid fibrils is considered to be one of the main causes of Parkinson's disease. Inhibition of this aggregation is a promising approach for disease treatment. Dozens of compounds able to inhibit αSyn fibrillization in solution were developed during the last decade. However, the applicability of most of them in the cellular environment was not established because of the absence of a suitable cell-based assay. In this work, we developed an assay for testing αSyn aggregation inhibitors in cells that is based on fluorescence resonance energy transfer (FRET) between labeled αSyn molecules in fibrils. The assay directly reports the amount of fibrillized αSyn and is more reliable than the assays based on cell viability. Moreover, we showed that cell viability decline does not always correlate with the amount of misfolded αSyn. The developed FRET-based assay does not interfere with the aggregation process and is suitable for high-throughput testing of αSyn aggregation inhibitors. Its application can sort out non-specific inhibitors and thus significantly facilitate the development of drugs for Parkinson`s disease.
- MeSH
- alfa-synuklein analýza antagonisté a inhibitory metabolismus MeSH
- benzodioxoly farmakologie MeSH
- elektroporace metody MeSH
- HeLa buňky MeSH
- intracelulární tekutina chemie účinky léků metabolismus MeSH
- lidé MeSH
- proteinové agregáty účinky léků fyziologie MeSH
- pyrazoly farmakologie MeSH
- rezonanční přenos fluorescenční energie metody MeSH
- viabilita buněk účinky léků fyziologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The interaction of α-synuclein with mitochondria in both typical and atypical Parkinson's disease is a critical component of degeneration. The mechanism of cell-to-cell propagation of pathological α-synuclein in synucleinopathies is unclear. Intercellular exchange of mitochondria along tunnelling nanotubes has been described in other diseases, such as cancer; however, its role in synucleinopathies is unknown. Pathological α-synuclein species have been demonstrated previously to move from cell to cell via tunnelling nanotubes. This process was further explored using co-culture and monoculture systems to determine if α-synuclein binds to migrating mitochondria within tunnelling nanotubes. Super-resolution analysis via stimulated emission depletion microscopy showed interaction between α-synuclein with the mitochondrial outer membrane and the presence of alpha-synuclein associated with mitochondria in tunnelling nanotubes between 1321N1, differentiated THP-1 and SH-SY5Y cell types. siRNA knockdown of Miro1, a critical protein-bridging mitochondria to the motor adaptor complex, had no effect on mitochondrial density or α-synuclein association with mitochondria in tunnelling nanotubes. The results show that α-synuclein aggregates associate with mitochondria in intercellular tunnelling nanotubes, suggesting that mitochondria-mediated α-synuclein transfer between cells may contribute to cell-to-cell spread of α-synuclein aggregates and disease propagation.
Misfolding of the neuronal protein α-synuclein (αSyn) into amyloid fibrils is involved in the development of Parkinson's disease (PD), and inhibition of this process is considered to be a promising therapeutic approach. In this work, we engineered protein inhibitors that bind to fibrils with higher affinity than the monomeric αSyn. They were developed based on the recent structural data of the αSyn fibrils and were shown to prevent fibril elongation upon binding to fibril ends. These inhibitors are highly selective to the misfolded αSyn, nontoxic, and active in cytosol in small concentrations. The best-performing inhibitor shows IC50 ∼10 nM in a cell-based assay, which corresponds to the ∼1:60 molar ratio to αSyn. It can suppress the formation of αSyn aggregates in cells that can be potentially used to slow down the spreading of the pathological aggregates from cell to cell during the course of the PD.
- MeSH
- alfa-synuklein antagonisté a inhibitory genetika metabolismus MeSH
- amyloid metabolismus MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční mikroskopie MeSH
- kinetika MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- Parkinsonova nemoc metabolismus patologie MeSH
- peptidy chemie metabolismus MeSH
- proteinové agregáty MeSH
- racionální návrh léčiv * MeSH
- sekvence aminokyselin MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH