Isolation and Characterization of Fungal Endophytes From Helichrysum oocephalum, Evaluating Their Antimicrobial Activities, and Annotation of Their Metabolites

. 2025 Jun ; 22 (6) : e202402236. [epub] 20250313

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40007502

Antibiotic resistance is one of the biggest threats to global health. Fungal endophytes are important sources of active natural products with antimicrobial potential. The purpose of this study was to characterize the endophytes coexisting with Helichrysum oocephalum, evaluate their antimicrobial activities, and annotate the endophytes metabolites. Six fungal species, including Fusarium avenaceum and Fusarium tricinctum, were identified. Endophytes were cultured, and their metabolites were extracted. The antimicrobial effects of the extracts were tested against Staphylococcus aureus, Bacillus cereus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. In addition, anti-biofilm effects of the extracts were examined against P. aeruginosa and S. epidermidis. The metabolites in the most active extract were annotated on the basis of the LC-ESI-QToF-MS/MS data. In anti-biofilm studies, F. avenaceum extract was effective in destroying and inhibiting the biofilm formation of S. epidermidis. LC-MS analysis showed that most of the identified compounds in the active extracts were enniatins (cyclic hexadepsipeptides). However, apicidin derivatives were also annotated. Our results revealed that these endophytes, especially Fusarium species, have antimicrobial activity against S. aureus, B. cereus, and C. albicans and anti-biofilm activity against S. epidermidis. According to the literature, the observed antimicrobial activity can be attributed to the enniatins. However, further phytochemical and pharmacological studies are necessary in this regard.

Zobrazit více v PubMed

A. Atanasov, S. Zotchev, V. Dirsch, et al., “Natural Products in Drug Discovery: Advances and Opportunities,” Nature Reviews Drug Discovery 20 (2021): 200–216.

B. Guo, Y. Wang, X. Sun, and K. Tang, “Bioactive Natural Products From Endophytes: A Review,” Prikladnaia Biokhimiia I Mikrobiologiia 44 (2008): 153–158.

H. W. Zhang, Y. C. Song, and R. X. Tan, “Biology and Chemistry of Endophytes,” Natural Product Reports 23 (2006): 753–771.

R. Mostafazade, L. Arabi, Z. Tazik, M. Akaberi, and B. S. Fazly Bazzaz, “Fungal Endophytes: Treasure Trove for Green Synthesis of Metallic Nanoparticles and Their Biological Applications,” Biocatalysis and Agricultural Biotechnology 60(2024): 103307.

Z. Deng and L. Cao, “Fungal Endophytes and Their Interactions With Plants in Phytoremediation: A Review,” Chemosphere 168 (2017): 1100–1106.

POWO, Plants of the World Online (Facilitated by the Royal Botanic Gardens, Kew, 2025). accessed February 26, 2025, https://powo.science.kew.org/

M. Akaberi, O. Danton, Z. Tayarani‐Najaran, et al., “HPLC‐Based Activity Profiling for Antiprotozoal Compounds in the Endemic Iranian Medicinal Plant Helichrysum oocephalum,” Journal of Natural Products 82 (2019): 958–969.

M. Akaberi, Z. T. Najaran, N. Azizi, and S. A. Emami, “Metabolite Profiling and Antiprotozoal Activity of Three Endemic Iranian Helichrysum Species,” Industrial Crops and Products 174 (2021): 114196.

S. Z. Nobakht, M. Akaberi, A. H. Mohammadpour, A. Tafazoli Moghadam, and S. A. Emami, “Hypericum perforatum: Traditional Uses, Clinical Trials, and Drug Interactions,” Iranian Journal of Basic Medical Sciences 25 (2022): 1045–1058.

R. M. K. Toghueo, “Bioprospecting Endophytic Fungi From Fusarium Genus as Sources of Bioactive Metabolites,” Mycology 11 (2020): 1–21.

T. Arie, “Fusarium Diseases of Cultivated Plants, Control, Diagnosis, and Molecular and Genetic Studies,” Journal of Pesticide Science 44 (2019): 275–281.

M. Xu, Z. Huang, W. Zhu, Y. Liu, X. Bai, and H. Zhang, “Fusarium‐Derived Secondary Metabolites With Antimicrobial Effects,” Molecules 28 (2023): 3424.

M. Li, R. Yu, X. Bai, H. Wang, and H. Zhang, “Fusarium: A Treasure Trove of Bioactive Secondary Metabolites,” Natural Product Reports 37 (2020): 1568–1588.

A. Prosperini, H. Berrada, M. J. Ruiz, et al., “A Review of the Mycotoxin Enniatin B,” Front Public Health 5 (2017): 304.

G. Meca, I. Sospedra, M. A. Valero, J. Mañes, G. Font, M. J. Ruiz, “Antibacterial Activity of the Enniatin B, Produced by Fusarium Tricinctum in Liquid Culture, and Cytotoxic Effects on Caco‐2 Cells,” Toxicology Mechanisms and Methods 21 (2011): 503–512.

G. Meca, J. M. Soriano, A. Gaspari, A. Ritieni, A. Moretti, J. Mañes, “Antifungal Effects of the Bioactive Compounds Enniatins A, A1, B, B1,” Toxicon 56 (2010): 480–485.

Y. A. Ovchinnikov, V. T. Ivanov, A. V. Evstratov, et al., “The Enniatin Ionophores. Conformation and Ion Binding Properties,” International Journal of Peptide and Protein Research 6 (1974): 465–498.

K. Hiraga, S. Yamamoto, H. Fukuda, N. Hamanaka, K. Oda, “Enniatin Has a New Function as an Inhibitor of Pdr5p, One of the ABC Transporters in Saccharomyces cerevisiae,” Biochemical and Biophysical Research Communications 328 (2005): 1119–1125.

R. Dornetshuber, P. Heffeter, M. Sulyok, et al., “Interactions Between ABC‐Transport Proteins and the Secondary Fusarium Metabolites Enniatin and Beauvericin,” Molecular Nutrition & Food Research 53 (2009): 904‐920.

Z. Zhang, S. Schwartz, L. Wagner, et al., “A Greedy Algorithm for Aligning DNA Sequences,” Journal of Computational Biology 7 (2020): 203–214.

J. C. Wootton, S. Federhen, “Analysis of Compositionally Biased Regions in Sequence Databases,” Methods in Enzymology 266 (1996): 554–571.

J. C. Wootton, S. Federhen, “Statistics of Local Complexity in Amino Acid Sequences and Sequence Databases,” Computers & Chemistry 17 (1993): 149–163.

J. L. Sørensen, K. F. Nielsen, P. H. Rasmussen, U. Thrane, “Development of a LC–MS/MS Method for the Analysis of Enniatins and Beauvericin in Whole Fresh and Ensiled Maize,” Journal of Agricultural and Food Chemistry 56 (2008): 10439–10443.

S. Uhlig, M. Jestoi, A. Kristin Knutsen, B. T. Heier, “Multiple Regression Analysis as a Tool for the Identification of Relations Between Semi‐Quantitative LC–MS Data and Cytotoxicity of Extracts of the Fungus Fusarium avenaceum (syn. F. arthrosporioides),” Toxicon 48 (2006): 567–579.

S. B. Singh, D. L. Zink, J. D. Polishook, et al., “Apicidins: Novel Cyclic Tetrapeptides as Coccidiostats and Antimalarial Agents From Fusarium pallidoroseum,” Tetrahedron Letters 37 (1996): 8077–8080.

S. B. Singh, D. L. Zink, J. M. Liesch, et al., “Structure and Chemistry of Apicidins, a Class of Novel Cyclic Tetrapeptides Without a Terminal α‐Keto Epoxide as Inhibitors of Histone Deacetylase With Potent Antiprotozoal Activities,” The Journal of Organic Chemistry 67 (2002): 815–825.

A. M. Zaher, M. A. Makboul, A. M. Moharram, B. L. Tekwani, A. I. Calderón, “A New Enniatin Antibiotic From the Endophyte Fusarium tricinctum Corda,” Journal of Antibiotics 68 (2015): 197–200.

H. H. Song, H. S. Lee, G. P. Lee, S. D. Ha, C. Lee, “Structural Analysis of Enniatin H, I, and MK1688 and Beauvericin by Liquid Chromatography‐Tandem Mass Spectrometry (LC–MS/MS) and Their Production by Fusarium oxysporum KFCC 11363P,” Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 26 (2009): 518–526.

A. Visconti, L. A. Blais, J. W. ApSimon, R. Greenhalgh, J. D. Miller, “Production of Enniatins by Fusarium acuminatum and Fusarium compactum in Liquid Culture: Isolation and Characterization of Three New Enniatins, B2, B3, and B4,” Journal of Agricultural and Food Chemistry 40 (1992): 1076–1082.

H. Tomoda, H. Nishida, X. H. Huang, R. Masuma, Y. K. Kim, S. Omura, “New Cyclodepsipeptides, Enniatins D, E and F Produced by Fusarium Sp. FO‐1305,” Journal of Antibiotics 45 (1992): 1207–1215.

G. N. Tishchenko, N. E. Zhukhlistova, “Crystal and Molecular Structure of the Membrane‐Active Antibiotic Enniatin C,” Crystallography Reports 45 (2000): 619–625.

H. Olleik, C. Nicoletti, M. Lafond, et al., “Comparative Structure‐Activity Analysis of the Antimicrobial Activity, Cytotoxicity, and Mechanism of Action of the Fungal Cyclohexadepsipeptides Enniatins and Beauvericin,” Toxins (Basel) 11 (2019): 514.

H. Sasaki, S. Kurakado, Y. Matsumoto, et al., “Enniatins From a Marine‐Derived Fungus Fusarium Sp. Inhibit Biofilm Formation by the Pathogenic Fungus Candida albicans,” Journal of Natural Medicines 77 (2023): 455–463.

C. D. M. De Siqueira, M. S. I. Fragoso, V. R. Severo, et al., “Targeting HDACs of Apicomplexans: Structural Insights for a Better Treatment,” Parasitology 149 (2022): 956–967.

K. W. Von Bargen, E. M. Niehaus, K. Bergander, R. Brun, B. Tudzynski, H. U. Humpf, “Structure Elucidation and Antimalarial Activity of Apicidin F: An Apicidin‐Like Compound Produced by Fusarium fujikuroi,” Journal of Natural Products 76 (2013): 2136–2140.

Y. Kalantarmotamedi, R. T. Eastman, R. Guha, A. Bender, “A Systematic and Prospectively Validated Approach for Identifying Synergistic Drug Combinations Against Malaria,”Malaria Journal 17 (2018): 160.

K. T. Andrews, T. N. Tran, A. J. Lucke, et al., “Potent Antimalarial Activity of Histone Deacetylase Inhibitor Analogues,” Antimicrobial Agents and Chemotherapy 52 (2008): 1454–1461.

J. Hallmann, G. Berg, and B. Schulz, "Isolation Procedures for Endophytic Microorganisms," in Microbial Root Endophytes, (Eds: B. J. E. Schulz, C. J. C. Boyle, and T. N. Sieber),Springer, Berlin Heidelberg, 2006.

S. Rodríguez Sabina, A. Cosoveanu, L. Guardia, R. Cabrera, “Medicinal Plant Helychrisum stoechas and Endophytic Fungi—Hints of Ecology,” Romanian Journal for Plant Protection 12 (2019): 35–40.

Z. Tazik, K. Rahnama, M. Iranshahi, J. F. White, H. Soltanloo, “A New Species of Pithoascus and First Report of This Genus as Endophyte Associated With Ferula ovina,” Mycoscience 61 (2020): 145–150.

Z. Tazik, K. Rahnama, M. Iranshahi, J. F. White, H. Soltanloo, “Ochroconis ferulica Sp. Nov. (venturiales), a Fungal Endophyte From Ferula ovina,” Nova Hedwigia 110 (2020): 369–381.

T. White, T. Bruns, S. Lee, et al., “Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics,” in PCR Protocols, Academic Press Inc,DN1990, 315–322.

R. Vilgalys, M. Hester, “Rapid Genetic Identification and Mapping of Enzymatically Amplified Ribosomal DNA From Several Cryptococcus Species,” Journal of Bacteriology 172 (1990): 4238–4246.

Q. Zhang, X. Wei, J. Wang, “Phillyrin Produced by Colletotrichum gloeosporioides, an Endophytic Fungus Isolated From Forsythia suspensa,” Fitoterapia 83 (2012): 1500–1505.

Z. Daroodi, P. Taheri, S. Tarighi, M. Iranshahi, M. Akaberi, “Efficacy of Ergosterol Peroxide Obtained From the Endophytic Fungus Acrophialophora jodhpurensis Against Rhizoctonia solani,” Journal of Applied Microbiology 135 (2024): lxae031.

V. Soheili, N. Khedmatgozar Oghaz, Z. Sabeti Noughabi, B. S. Fazly Bazzaz, “The Novel Effect of Cis‐2‐Decenoic Acid on Biofilm Producing Pseudomonas aeruginosa,” Microbiological Research 6 (2015): 6158.

S. Eghbaliferiz, V. Soheili, Z. Tayarani‐Najaran, J. Asili, “Antimicrobial and Cytotoxic Activity of Extracts From Salvia tebesana Bunge and Salvia sclareopsis Bornm Cultivated in Iran,” Physiology and Molecular Biology of Plants 25 (2019): 1083–1089.

L. Drago, W. Boot, K. Dimas, et al., “Does Implant Coating With Antibacterial‐Loaded Hydrogel Reduce Bacterial Colonization and Biofilm Formation In Vitro?,” Clinical Orthopaedics and Related Research 472 (2014): 3311–3323.

F. Zanganeh, Z. Tayarani‐Najaran, K. Nesměrák, M. Štícha, S. A. Emami, M. Akaberi, “Dereplication of Natural Cytotoxic Products From Helichrysum oligocephalum Using Ultra‐Performance Liquid Chromatography–Quadrupole Time of Flight‐Mass Spectrometry,” Separation Science Plus 7 (2024): 2300150.

DNP (Dictionary of Natural Products), (CRC Press, 2019). http://dnp.chemnetbase.com.

E. Zibaee, M. Akaberi, Z. Tayarani‐Najaran, et al., “Comparative LC‐ESIMS‐Based Metabolite Profiling of Senna italica With Senna alexandrina and Evaluating Their Hepatotoxicity,” Metabolites 13 (2023): 559.

O. Potterat, M. Hamburger, “Combined Use of Extract Libraries and HPLC‐Based Activity Profiling for Lead Discovery: Potential, Challenges, and Practical Considerations,” Planta Medica 80 (2014): 1171–1181.

R. Schmid, S. Heuckeroth, A. Korf, et al., “Integrative Analysis of Multimodal Mass Spectrometry Data in MZmine 3,” Nature Biotechnology 41 (2023): 447–449.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...