An ascomycota coculture in batch bioreactor is better than polycultures for cellulase production

. 2018 Jul ; 63 (4) : 467-478. [epub] 20180208

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29423709

Grantová podpora
na Fundación Banco Santander
261027 Consejo Nacional de Ciencia y Tecnología
M13 A02 ECOS NORD ANUIES CONACYT

Odkazy

PubMed 29423709
DOI 10.1007/s12223-018-0588-1
PII: 10.1007/s12223-018-0588-1
Knihovny.cz E-zdroje

Efficient hydrolysis of holocellulose depends on a proper balance between cellulase (endoglucanase, exoglucanase, β-glucosidase) and xylanase activities. The present study aimed to induce the production of cellulases and xylanases using liquid cultures (one, two, three, and four fungal strains on the same bioreactor) of wild strains of Trichoderma harzianum, Aspergillus niger, and Fusarium oxysporum. The strains were identified by amplification and analysis of the ITS rDNA region and the obtained sequences were deposited in Genbank. Enzymes (endoglucanase, exoglucansae, β-glucosidase, and xylanase activities) and the profile of extracellular protein isoforms (SDS-PAGE) produced by different fungal combinations (N = 14) were analyzed by Pearson's correlation matrix and principal component analysis (PCA). According to our results, induction of endoglucanase (19.02%) and β-glucosidase (6.35%) were obtained after 4 days when A. niger and F. oxysporum were cocultured. The combination of A. niger-T. harzianum produced higher endoglucanase in a shorter time than monocultures. On the contrary, when more than two strains were cultured in the same reactor, the relationships of competition were established, trending to diminish the amount of enzymes and the extracellular protein isoforms produced. The xylanase production was sensible to stress produced by mixed cultures, decreasing their activity. This is important when the aim is to produce cellulase-free xylanase. In addition, exoglucanase activity did not change in the combinations tested.

Zobrazit více v PubMed

Appl Environ Microbiol. 2002 Apr;68(4):1556-60 PubMed

J Microbiol Biotechnol. 2011 Aug;21(8):808-17 PubMed

AMB Express. 2015 Jan 24;5(1):3 PubMed

Biochemistry. 1992 Oct 20;31(41):9961-9 PubMed

Appl Biochem Biotechnol. 2005 Spring;121-124:93-104 PubMed

BMC Genomics. 2011 Jan 19;12:49 PubMed

Carbohydr Res. 2009 Oct 12;344(15):1984-92 PubMed

Eur J Biochem. 1997 Apr 1;245(1):164-73 PubMed

Gene. 1996 Oct 10;175(1-2):29-33 PubMed

Bioresour Technol. 2013 Sep;144:693-7 PubMed

Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6241-6 PubMed

Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14646-51 PubMed

Appl Environ Microbiol. 1996 Apr;62(4):1151-8 PubMed

Mol Biol Evol. 2013 Dec;30(12):2725-9 PubMed

Folia Microbiol (Praha). 2004;49(1):13-8 PubMed

Gene. 1999 Jan 21;226(2):147-54 PubMed

Appl Biochem Biotechnol. 2002 Spring;98-100:1105-14 PubMed

Bioresour Technol. 2010 Jul;101(13):4814-9 PubMed

Anal Biochem. 1986 Feb 15;153(1):75-9 PubMed

Enzyme Microb Technol. 2000 Oct 1;27(7):467-474 PubMed

Eur J Biochem. 1988 Jan 4;170(3):575-81 PubMed

Bioresour Technol. 2004 Feb;91(3):259-62 PubMed

Appl Microbiol Biotechnol. 2001 Aug;56(3-4):326-38 PubMed

Biotechnol Appl Biochem. 1991 Dec;14(3):317-23 PubMed

J Agric Food Chem. 2010 Oct 13;58(19):10309-14 PubMed

Appl Biochem Biotechnol. 2015 Apr;175(8):3709-28 PubMed

Bioresour Technol. 2015;188:240-6 PubMed

Biotechnol Biofuels. 2013 Mar 21;6(1):41 PubMed

Enzyme Microb Technol. 2015 Jun;73-74:9-19 PubMed

Zentralbl Mikrobiol. 1992 Nov;147(8):569-76 PubMed

Appl Biochem Biotechnol. 1996 Spring;57-58:375-81 PubMed

Bioresour Technol. 2013 Oct;146:597-603 PubMed

Carbohydr Polym. 2014 Nov 4;112:56-62 PubMed

Appl Microbiol Biotechnol. 2010 Nov;88(5):1077-85 PubMed

Bioresour Technol. 2015 May;183:188-94 PubMed

Eur J Biochem. 1992 Oct 15;209(2):651-9 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...