In Vivo Evaluation of Short-Term Performance of New Three-Layer Collagen-Based Vascular Graft Designed for Low-Flow Peripheral Vascular Reconstructions
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29682536
PubMed Central
PMC5848142
DOI
10.1155/2018/3519596
Knihovny.cz E-zdroje
- MeSH
- arteriae carotides účinky léků MeSH
- cévní protézy MeSH
- cévy - implantace protéz metody MeSH
- kolagen metabolismus MeSH
- okluze cévního štěpu farmakoterapie MeSH
- ovce MeSH
- prospektivní studie MeSH
- protézy - design metody MeSH
- průchodnost cév účinky léků MeSH
- zákroky plastické chirurgie metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kolagen MeSH
AIM: The aim of this study was to evaluate short-term patency of the new prosthetic graft and its structural changes after explantation. METHODS: The study team developed a three-layer conduit composed of a scaffold made from polyester coated with collagen from the inner and outer side with an internal diameter of 6 mm. The conduit was implanted as a bilateral bypass to the carotid artery in 7 sheep and stenosis was created in selected animals. After a period of 161 days, the explants were evaluated as gross and microscopic specimens. RESULTS: The initial flow rate (median ± IQR) in grafts with and without artificial stenosis was 120 ± 79 ml/min and 255 ± 255 ml/min, respectively. Graft occlusion occurred after 99 days in one of 13 conduits (patency rate: 92%). Wall-adherent thrombi occurred only in sharp curvatures in two grafts. Microscopic evaluation showed good engraftment and preserved structure in seven conduits; inflammatory changes with foci of bleeding, necrosis, and disintegration in four conduits; and narrowing of the graft due to thickening of the wall with multifocal separation of the outer layer in two conduits. CONCLUSIONS: This study demonstrates good short-term patency rates of a newly designed three-layer vascular graft even in low-flow conditions in a sheep model.
Zobrazit více v PubMed
Pomposelli F. B., Kansal N., Hamdan A. D., et al. A decade of experience with dorsalis pedis artery bypass: Analysis of outcome in more than 1000 cases. Journal of Vascular Surgery. 2003;37(2):307–315. doi: 10.1067/mva.2003.125. PubMed DOI
Schneider J. R., Walsh D. B., McDaniel M. D., Zwolak R. M., Besso S. R., Cronenwett J. L. Pedal bypass versus tibial bypass with autogenous vein: A comparison of outcome and hemodynamic results. Journal of Vascular Surgery. 1993;17(6):1029–1040. doi: 10.1016/0741-5214(93)90673-A. PubMed DOI
Kannan R. Y., Salacinski H. J., Butler P. E., Hamilton G., Seifalian A. M. Current status of prosthetic bypass grafts: a review. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2005;74(1):570–581. doi: 10.1002/jbm.b.30247. PubMed DOI
Sarkar S., Sales K. M., Hamilton G., Seifalian A. M. Addressing thrombogenicity in vascular graft construction. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2007;82(1):100–108. doi: 10.1002/jbm.b.30710. PubMed DOI
Horný L., Netušil M., Voňavková T. Axial prestretch and circumferential distensibility in biomechanics of abdominal aorta. Biomechanics and Modeling in Mechanobiology. 2014;13(4):783–799. doi: 10.1007/s10237-013-0534-8. PubMed DOI
Wang X., Lin P., Yao Q., Chen C. Development of small-diameter vascular grafts. World Journal of Surgery. 2007;31(4):682–689. doi: 10.1007/s00268-006-0731-z. PubMed DOI
De Valence S., Tille J.-C., Giliberto J.-P., et al. Advantages of bilayered vascular grafts for surgical applicability and tissue regeneration. Acta Biomaterialia. 2012;8(11):3914–3920. doi: 10.1016/j.actbio.2012.06.035. PubMed DOI
Inoguchi H., Kwon I. K., Inoue E., Takamizawa K., Maehara Y., Matsuda T. Mechanical responses of a compliant electrospun poly(L-lactide-co-ε- caprolactone) small-diameter vascular graft. Biomaterials. 2006;27(8):1470–1478. doi: 10.1016/j.biomaterials.2005.08.029. PubMed DOI
Singh C., Wong C., Wang X. Medical textiles as vascular implants and their success to mimic natural arteries. Journal of Functional Biomaterials. 2015;6(4):500–525. doi: 10.3390/jfb6030500. PubMed DOI PMC
Greenwald S. E., Berry C. L. Improving vascular grafts: the importance of mechanical and haemodynamic properties. The Journal of Pathology. 2000;190(3):292–299. doi: 10.1002/(SICI)1096-9896(200002)190:3<292::AID-PATH528>3.0.CO;2-S. PubMed DOI
Vesely J., Horny L., Chlup H., Beran M., Krajicek M., Zitny R. Effect of polyvinyl alcohol concentration on the mechanical properties of collagen/polyvinyl alcohol blends. Applied Mechanics and Materials. 2015;732:161–164. doi: 10.4028/www.scientific.net/AMM.732.161. DOI
Bernal A., Balkova R., Kuritka I., Saha P. Preparation and characterisation of a new double-sided bio-artificial material prepared by casting of poly(vinyl alcohol) on collagen. Polymer Bulletin. 2013;70(2):431–453. doi: 10.1007/s00289-012-0802-2. DOI
Suckow B. D., Kraiss L. W., Stone D. H., et al. Comparison of graft patency, limb salvage, and antithrombotic therapy between prosthetic and autogenous below-knee bypass for critical limb ischemia. Annals of Vascular Surgery. 2013;27(8):1134–1145. doi: 10.1016/j.avsg.2013.01.019. PubMed DOI PMC
Hunink M. G. M., Wong J. B., Donaldson M. C., Meyerovitz M. F., Harrington D. P. Patency Results of Percutaneous and Surgical Revascularization for Femoropopliteal Arterial Disease. Medical Decision Making. 1994;14(1):71–81. doi: 10.1177/0272989X9401400109. PubMed DOI
Enomoto S., Sumi M., Kajimoto K., et al. Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. Journal of Vascular Surgery. 2010;51(1):155–164. doi: 10.1016/j.jvs.2009.09.005. PubMed DOI
Williams S. K., Kleinert L. B., Patula-Steinbrenner V. Accelerated neovascularization and endothelialization of vascular grafts promoted by covalently bound laminin type 1. Journal of Biomedical Materials Research Part A. 2011;99(1):67–73. doi: 10.1002/jbm.a.33138. PubMed DOI PMC
Ranjan A. K., Kumar U., Hardikar A. A., Poddar P., Nair P. D., Hardikar A. A. Human blood vessel-derived endothelial progenitors for endothelialization of small diameter vascular prosthesis. PLoS ONE. 2009;4(11) doi: 10.1371/journal.pone.0007718.e7718 PubMed DOI PMC
Heyligers J. M. M., Arts C. H. P., Verhagen H. J. M., De Groot P. G., Moll F. L. Improving small-diameter vascular grafts: From the application of an endothelial cell lining to the construction of atissue-engineered blood vessel. Annals of Vascular Surgery. 2005;19(3):448–456. doi: 10.1007/s10016-005-0026-0. PubMed DOI
Roha J. D., Sawh-Martinez R., Brennan M. P., et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proceedings of the National Acadamy of Sciences of the United States of America. 2010;107(10):4669–4674. doi: 10.1073/pnas.0911465107. PubMed DOI PMC
Di Giammarco G., Pano M., Cirmeni S., Pelini P., Vitolla G., Di Mauro M. Predictive value of intraoperative transit-time flow measurement for short-term graft patency in coronary surgery. The Journal of Thoracic and Cardiovascular Surgery. 2006;132(3):468–474. doi: 10.1016/j.jtcvs.2006.02.014. PubMed DOI
Brumberg R. S., Back M. R., Armstrong P. A., et al. The relative importance of graft surveillance and warfarin therapy in infrainguinal prosthetic bypass failure. Journal of Vascular Surgery. 2007;46(6):1160–1166. doi: 10.1016/j.jvs.2007.07.046. PubMed DOI
Vancomycin-releasing cross-linked collagen sponges as wound dressings