Unlocking the secrets of aortic pseudoaneurysms - exploring tensile testing of prostheses, anastomoses, and native vessels in the thoracic aorta: A clinical-engineering correlation
Language English Country Poland Media print-electronic
Document type Journal Article
Grant support
LX22NPO5104
National Institute for Research of Metabolic and Cardiovascular Diseases - Czech Republic
NW24-02-00206
Ministry of Health of the Czech Republic - Czech Republic
NW24-08-00133
Ministry of Health of the Czech Republic - Czech Republic
PubMed
40583340
DOI
10.32725/jab.2025.008
Knihovny.cz E-resources
- Keywords
- Aortic pseudoaneurysm, Bentall procedure, Coronary arteries, Tensile testing, Thoracic aortic false aneurysm,
- MeSH
- Anastomosis, Surgical MeSH
- Aortic Aneurysm, Thoracic * surgery physiopathology MeSH
- Aorta, Thoracic * surgery physiopathology MeSH
- Blood Vessel Prosthesis * MeSH
- Coronary Vessels surgery physiopathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Stress, Mechanical MeSH
- Cadaver MeSH
- Aneurysm, False * surgery physiopathology MeSH
- Tensile Strength MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
INTRODUCTION: This study examines the mechanical properties of thoracic aortic false aneurysms (TAFA) and how the use of vascular prostheses, native vessels, and anastomoses affects their development. This is done through tensile testing, simulating a Bentall procedure, which is the most common surgery leading to TAFA development. METHODS: We conducted uniaxial tensile tests on the native right and left coronary arteries from five cadaveric donors. They were anastomosed to two vascular prostheses in the longitudinal and circumferential directions to assess their mechanical responses under load. RESULTS AND DISCUSSION: All anastomosis specimens ruptured on the native vessel side, with no breaches occurring on the prosthesis side. The P2 prosthesis exhibited a mechanical response closer to that of the native vessel compared to the P1 prosthesis. There were no statistically significant differences in wall thickness or mechanical properties between the left and right coronary artery samples, leading to the merging of these groups. The strain of the anastomosis in the longitudinal direction was significantly higher than in the circumferential direction. In both directions, the strain at the onset of rupture was greater than that of the native vessel, with a particularly notable difference in the longitudinal direction. Although there was no significant difference in stress values between the longitudinal and circumferential directions, forces per suture were slightly higher in the circumferential direction. CONCLUSION: Using the "endo-button buttress technique" with a double-layer anastomosis can help distribute the load and reduce stress. An alternative option is to use a Carrel patch to reinforce the connection between the target site and the conduit. Additionally, autologous pericardium can be employed for reinforcement.
See more in PubMed
Carlson RG, Lillehei CW, Edwards JE (1970). Cystic medial necrosis of the ascending aorta in relation to age and hypertension. Am J Cardiol 25(4): 411-415. DOI: 10.1016/0002-9149(70)90006-8. PubMed DOI
Castillo-Cruz O, Avilés F, Vargas-Coronado R, Cauich-Rodríguez JV, Cha-Chan LH, Sessini V, Peponi L (2019). Mechanical properties of l-lysine based segmented polyurethane vascular grafts and their shape memory potential. Mater Sci Eng C 102: 887-895. DOI: 10.1016/j.msec.2019.04.073. PubMed DOI
Chlup H, Horny L, Zitny R, Konvickova S, Adamek T (2008). Constitutive Equations for Human Saphenous Vein Coronary Artery Bypass Graft. Int J Med Health Biomed Bioeng Pharm Eng 2(8): 272-275.
Chlup H, Skočilas J, Štancl J, Houška M, Žitný R (2022). Effects of Extrusion and Irradiation on the Mechanical Properties of a Water-Collagen Solution. Polymers (Basel) 14(3): 578. DOI: 10.3390/polym14030578. PubMed DOI
Chlup H, Suchý T, Šupová M (2023). The electron beam induced cross-linking of bovine collagen gels with various concentrations: The mechanical properties and secondary structure. Polymer (Guildf) 287: 126423. DOI: 10.1016/j.polymer.2023.126423. DOI
Chlupáč J, Filová E, Bačáková L (2009). Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res 58 Suppl 2: S119-S140. DOI: 10.33549/physiolres.931918. PubMed DOI
Claes E, Atienza JM, Guinea GV, Rojo FJ, Bernal JM, Revuelta JM, Elices M (2010). Mechanical properties of human coronary arteries. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. Buenos Aires, Argentina, pp. 3792-3795. DOI: 10.1109/IEMBS.2010.5627560. PubMed DOI
Czerny M, Grabenwöger M, Berger T, Aboyans V, Della Corte A, Chen EP, et al. (2024). EACTS/STS Guidelines for Diagnosing and Treating Acute and Chronic Syndromes of the Aortic Organ. Ann Thorac Surg 118(1): 5-115. DOI: 10.1016/j.athoracsur.2024.01.021. PubMed DOI
Dong H, Liu M, Lou X, Leshnower BG, Sun W, Ziganshin BA, et al. (2022). Ultimate tensile strength and biaxial stress-strain responses of aortic tissues - A clinical-engineering correlation. Appl Eng Sci 10: 100101. DOI: 10.1016/j.apples.2022.100101. DOI
Dumont E, Carrier M, Cartier R, Pellerin M, Poirier N, Bouchard D, Perrault LP (2004). Repair of aortic false aneurysm using deep hypothermia and circulatory arrest. Ann Thorac Surg 78(1): 117-120; discussion 120-121. DOI: 10.1016/j.athoracsur.2004.01.028. PubMed DOI
Duprey A, Trabelsi O, Vola M, Favre JP, Avril S (2016). Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomater 42: 273-285. DOI: 10.1016/j.actbio.2016.06.028. PubMed DOI
Durmuş E, Kivrak T, Sunbul M, Ataş H, Ak K, Sari I, Tigen K (2015). Pseudoaneurysm formation due to bioglue use in aortic valve surgery. Eur J Ther 21(4): 256-258. DOI: 10.5578/GMJ.10817. DOI
Fehrenbacher J, Siderys H (2006). Use of BioGlue in Aortic Surgery: Proper Application Techniques and Results in 92 Patients. Heart Surg Forum 9(5): E794-E799. DOI: 10.1532/HSF98.20061066. PubMed DOI
Fukui T, Matsumoto T, Tanaka T, Ohashi T, Kumagai K, Akimoto H, et al. (2005). In vivo mechanical properties of thoracic aortic aneurysmal wall estimated from in vitro biaxial tensile test. Biomed Mater Eng 15(4): 295-305.
García-Herrera CM, Atienza JM, Rojo FJ, Claes E, Guinea GV, Celentano DJ, et al. (2012). Mechanical behaviour and rupture of normal and pathological human ascending aortic wall. Med Biol Eng Comput 50(6): 559-566. DOI: 10.1007/s11517-012-0876-x. PubMed DOI
Grus T, Lambert L, Mlcek M, Chlup H, Honsova E, Spacek M, et al. (2018). In Vivo Evaluation of Short-Term Performance of New Three-Layer Collagen-Based Vascular Graft Designed for Low-Flow Peripheral Vascular Reconstructions. Biomed Res Int 2018: 3519596. DOI: 10.1155/2018/3519596. PubMed DOI
Gultova E, Horny L, Chlup H, Zitny R (2011). A comparison between the exponential and limiting fiber extensibility pseudo-elastic model for the mullins effect in arterial tissue. J Theor Appl Mech 49(4): 1203-1216.
Horný L, Chlup H, Kužma J, Růžička P (2022a). Inflation-extension behaviour of 3D printed elastomer tubes and their constitutive description. Bioprinting 25: e00192. DOI: 10.1016/j.bprint.2022.e00192. DOI
Horny L, Chlup H, Zitny R, Vonavkova T, Vesely J, Lanzer P (2012). Ex Vivo Coronary Stent Implantation Evaluated with Digital Image Correlation. Exp Mech 52(9): 1555-1558. DOI: 10.1007/s11340-012-9620-6. DOI
Horný L, Roubalová L, Kronek J, Chlup H, Adámek T, Blanková A, et al. (2022b). Correlation between age, location, orientation, loading velocity and delamination strength in the human aorta. J Mech Behav Biomed Mater 133: 105340. DOI: 10.1016/j.jmbbm.2022.105340. PubMed DOI
Jiang M, Lawson ZT, Erel V, Pervere S, Nan T, Robbins AB, et al. (2020). Clamping soft biologic tissues for uniaxial tensile testing: A brief survey of current methods and development of a novel clamping mechanism. J Mech Behav Biomed Mater 103: 103503. DOI: 10.1016/j.jmbbm.2019.103503. PubMed DOI
Karimi A, Navidbakhsh M, Shojaei A (2015). A combination of histological analyses and uniaxial tensile tests to determine the material coefficients of the healthy and atherosclerotic human coronary arteries. Tissue Cell 47(2): 152-158. DOI: 10.1016/j.tice.2015.01.004. PubMed DOI
Karimi A, Navidbakhsh M, Shojaei A, Faghihi S (2013). Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries. Mater Sci Eng C Mater Biol Appl 33(5): 2550-2554. DOI: 10.1016/j.msec.2013.02.016. PubMed DOI
Kobayashi T, Kurazumi H, Sato M, Gohra H (2018). Pseudoaneurysm rupture after acute Type A dissection repair: possible reaction to BioGlue. Interact Cardiovasc Thorac Surg 26(2): 331-332. DOI: 10.1093/icvts/ivx331. PubMed DOI
Ma WG, Ziganshin BA, Guo CF, Zafar MA, Sieller RS, Tranquilli M, Elefteriades JA (2017). Does BioGlue contribute to anastomotic pseudoaneurysm after thoracic aortic surgery? J Thorac Dis 9(8): 2491-2497. DOI: 10.21037/jtd.2017.06.120. PubMed DOI
Petuchova A, Maknickas A, Kostenko E, Stonkus R (2023). Experimental and theoretical investigation of aortic wall tissue in tensile tests. Technol Health Care 31(6): 2411-2421. DOI: 10.3233/THC-235007. PubMed DOI
Pratali S, Milano A, Codecasa R, De Carlo M, Borzoni G, Bortolotti U (2000). Improving hemostasis during replacement of the ascending aorta and aortic valve with a composite graft. Tex Heart Inst J 27(3): 246-249.
Razzouk A, Gundry S, Wang N, Heyner R, Sciolaro C, Van Arsdell G, et al. (1993). Pseudoaneurysms of the aorta after cardiac surgery or chest trauma. Am Surg 59(12): 818-823.
Rečičárová S, Chlup H, Jonák M, Netuka I (2023a). False aneurysms of the thoracic aorta: anastomosis investigation using the inflation-extension test. J Appl Biomed 21(4): 174-179. DOI: 10.32725/jab.2023.023. PubMed DOI
Rečičárová S, Ivák P, Pirk J (2023b). Surgical management of ascending aorta pseudoaneurysm in a patient with COVID-19. Cor Vasa 65(1): 113-115. DOI: 10.33678/cor.2022.060. DOI
Recicarova S, Jonak M, Netuka I (2024). Comprehensive multi-modality treatment of thoracic aorta pseudoaneurysms: a single-center experience. Gen Thorac Cardiovasc Surg 72(6): 387-394. DOI: 10.1007/s11748-023-01986-9. PubMed DOI
Rubio Alvarez J, Sierra Quiroga J, Martinez de Alegria A, Delgado Dominguez C (2011). Pulmonary embolism due to biological glue after repair of type A aortic dissection. Interact Cardiovasc Thorac Surg 12(4): 650-651. DOI: 10.1510/icvts.2010.261933. PubMed DOI
Schlatmann TJM, Becker AE (1977). Histologic changes in the normal aging aorta: Implications for dissecting aortic aneurysm. Am J Cardiol 39(1): 13-20. DOI: 10.1016/S0002-9149(77) 80004-0. DOI
Scholze M, Safavi S, Li KC, Ondruschka B, Werner M, Zwirner J, Hammer N (2020). Standardized tensile testing of soft tissue using a 3D printed clamping system. HardwareX 8: e00159. DOI: 10.1016/j.ohx.2020.e00159. PubMed DOI
Spacek M, Chlup H, Mitas P, Vesely J, Lambert L, Mlcek M, et al. (2019). Three-layer collagen-based vascular graft designed for low-flow peripheral vascular reconstructions. J Appl Biomed 17(1): 47-52. DOI: 10.32725/jab.2019.002. PubMed DOI
Spittell JA, Jr. (1983). Hypertension and arterial aneurysm. J Am Coll Cardiol 1(2 Pt 1): 533-540. DOI: 10.1016/S0735-1097(83)80085-0. PubMed DOI
Straka F, Schornik D, Masin J, Filova E, Mirejovsky T, Burdikova Z, et al. (2017). A New Approach to Heart Valve Tissue Engineering Based on Modifying Autologous Human Pericardium by 3D Cellular Mechanotransduction. J Biomater Tissue Eng 7(7): 527-543. DOI: 10.1166/jbt.2017.1598. DOI
Straka F, Schornik D, Masin J, Filova E, Mirejovsky T, Burdikova Z, et al. (2018). A human pericardium biopolymeric scaffold for autologous heart valve tissue engineering: cellular and extracellular matrix structure and biomechanical properties in comparison with a normal aortic heart valve. J Biomater Sci Polym Ed 29(6): 599-634. DOI: 10.1080/09205063.2018.1429732. PubMed DOI
Sugita S, Matsumoto T (2013). Novel biaxial tensile test for studying aortic failure phenomena at a microscopic level. Biomed Eng Online 12: 3. DOI: 10.1186/1475-925X-12-3. PubMed DOI
Šupová M, Suchý T, Chlup H, Šulc M, Kotrč T, Šilingová L, et al. (2023). The electron beam irradiation of collagen in the dry and gel states: The effect of the dose and water content from the primary to the quaternary levels. Int J Biol Macromol 253(Pt 4): 126898. DOI: 10.1016/j.ijbiomac.2023.126898. PubMed DOI
Takada J, Hamada K, Zhu X, Tsuboko Y, Iwasaki K (2023). Biaxial tensile testing system for measuring mechanical properties of both sides of biological tissues. J Mech Behav Biomed Mater 146: 106028. DOI: 10.1016/j.jmbbm.2023.106028. PubMed DOI
Veselý J, Horný L, Chlup H, Adámek T, Krajíček M, Žitný R (2015). Constitutive modeling of human saphenous veins at overloading pressures. J Mech Behav Biomed Mater 45: 101-108. DOI: 10.1016/j.jmbbm.2015.01.023. PubMed DOI
Witter K, Tonar Z, Matejka VM, Martinca T, Jonák M, Rokosný S, Pirk J (2010). Tissue reaction to three different types of tissue glues in an experimental aorta dissection model: a quantitative approach. Histochem Cell Biol 133(2): 241-259. DOI: 10.1007/s00418-009-0656-3. PubMed DOI
Zia AW, Liu R, Wu X (2022). Structural design and mechanical performance of composite vascular grafts. Biodes Manuf 5(4): 757-785. DOI: 10.1007/s42242-022-00201-7. DOI