Effects of Extrusion and Irradiation on the Mechanical Properties of a Water-Collagen Solution
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-07851S
Grant agency of the Czech Republic
PubMed
35160567
PubMed Central
PMC8840162
DOI
10.3390/polym14030578
PII: polym14030578
Knihovny.cz E-zdroje
- Klíčová slova
- anisotropy, collagen, electron irradiation, extrusion, tensile test,
- Publikační typ
- časopisecké články MeSH
This article describes 1D extension tests on bovine collagen samples (8% collagen in water). At such a high collagen concentration, the mechanical properties of semi-solid samples can be approximated by hyperelastic models (two-parametric HGO and Misof models were used), or simply by Hooke's law and the modulus of elasticity E. The experiments confirm a significant increase in the E-modulus of the samples irradiated with high-energy electrons. The modulus E ~ 9 kPa of non-irradiated samples increases monotonically up to E ~ 250 kPa for samples absorbing an e-beam dose of ~3300 Gy. This amplification is attributed to the formation of cross-links by irradiation. However, E-modulus can be increased not only by irradiation but also by exposure to a high strain rate. For example, soft isotropic collagen extruded through a 200 mm long capillary increases the modulus of elasticity from 9 kPa to 30 kPa, and the increase is almost isotropic. This stiffening occurs when the corrugated collagen fibers are straightened and are aligned in the flow direction. It seems that the permanent structural changes caused by extrusion mitigate the effects of the ex post applied irradiation. Irradiation of extruded samples by 3300 Gy increases the modulus of E-elasticity only three times (from 30 kPa to approximately 90 kPa). Extruded and ex post irradiated samples show slight anisotropy (the stiffness in the longitudinal direction is on an average greater than the transverse stiffness).
Zobrazit více v PubMed
Kumar V., Caves J.M., Haller C.A., Dai E., Liu L., Grainger S., Chaikof E.L. Acellular vascular grafts generated from collagen and elastin analogs. Acta Biomater. 2013;9:8067–8074. doi: 10.1016/j.actbio.2013.05.024. PubMed DOI PMC
Deiber J.A., Peirotti M.B., Ottone M.L. Rheological characterization of edible films made from collagen colloidal particle suspensions. Food Hydrocoll. 2011;25:1382–1392. doi: 10.1016/j.foodhyd.2011.01.002. DOI
Skočilas J., Žitný R., Štancl J., Dostál M., Landfeld A., Houška M. Rheological properties of collagen matter predicted using an extrusion rheometer. J. Texture Stud. 2016;47:514–522. doi: 10.1111/jtxs.12194. DOI
Daar E., Kaabar W., Woods E., Lei C., Nisbet A., Bradley D. Atomic force microscopy and mechanical testing of bovine pericardium irradiated to radiotherapy doses. Radiat. Phys. Chem. 2014;96:176–180. doi: 10.1016/j.radphyschem.2013.09.017. DOI
Puxkandl R., Zizak I., Paris O., Keckes J., Tesch W., Bernstorff S., Purslow P., Fratzl P. Viscoelastic properties of collagen: Synchrotron radiation investigations and structural model. Philos. Trans. R. Soc. B Biol. Sci. 2002;357:191–197. doi: 10.1098/rstb.2001.1033. PubMed DOI PMC
Misof K., Rapp G., Fratzl P. A new molecular model for collagen elasticity based on synchrotron X-ray scattering evidence. Biophys. J. 1997;72:1376–1381. doi: 10.1016/S0006-3495(97)78783-6. PubMed DOI PMC
Gotoh T., Itoh M., Okuda T. The changes of electrochemical and mechanical properties through gamma irradiation of a collagen aqueous solution. Int. J. Appl. Radiat. Isot. 1977;28:933–937. doi: 10.1016/0020-708X(77)90057-6. DOI
Sionkowska A., Wisniewski M., Skopinska J., Poggi G., Marsano E., Maxwell C., Wess T. Thermal and mechanical properties of UV irradiated collagen/chitosan thin films. Polym. Degrad. Stab. 2006;91:3026–3032. doi: 10.1016/j.polymdegradstab.2006.08.009. DOI
Liu B., Harrell R., Davis R.H., Dresden M.H., Spira M. The effect of gamma irradiation on injectable human amnion collagen. J. Biomed. Mater. Res. 1989;23:833–844. doi: 10.1002/jbm.820230803. PubMed DOI
Mohamed F., Bradley D.A., Winlove C.P. Effect of ionizing radiation on extracellular matrix. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007;580:566–569. doi: 10.1016/j.nima.2007.05.236. DOI
Giammona G., Pitarresi G., Cavallaro G., Spadaro G. New biodegradable hydrogels based on an acryloylated polyaspartamide cross-linked by gamma irradiation. J. Biomater. Sci. Polym. Ed. 1999;10:969–987. doi: 10.1163/156856299X00568. PubMed DOI
Riedel S., Hietschold P., Krömmelbein C., Kunschmann T., Konieczny R., Knolle W., Mierke C.T., Zink M., Mayr S.G. Design of biomimetic collagen matrices by reagent-free electron beam induced crosslinking: Structure-property relationships and cellular response. Mater. Des. 2019;168:168. doi: 10.1016/j.matdes.2019.107606. DOI
Hennink W., van Nostrum C. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 2012;64:223–236. doi: 10.1016/j.addr.2012.09.009. PubMed DOI
Manaila E., Craciun G., Ighigeanu D., Lungu I., Dumitru M., Stelescu M. Electron Beam Irradiation: A Method for Degradation of Composites Based on Natural Rubber and Plasticized Starch. Polymers. 2021;13:1950. doi: 10.3390/polym13121950. PubMed DOI PMC
Jamal N.A., Anuar H., Bahri A.R.S. Enhancing the Mechanical Properties of Cross-Linked Rubber-Toughened Nanocomposites via Electron Beam Irradiation. J. Nanotechnol. 2011;2011:1–8. doi: 10.1155/2011/769428. DOI
Šarac T., Quiévy N., Gusarov A., Konstantinović M. Influence of γ -irradiation and temperature on the mechanical properties of EPDM cable insulation. Radiat. Phys. Chem. 2016;125:151–155. doi: 10.1016/j.radphyschem.2016.03.024. DOI
Zeid M.A., Rabie S., Nada A., Khalil A., Hilal R. Effect of gamma irradiation on ethylene propylene diene terpolymer rubber composites. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2007;266:111–116. doi: 10.1016/j.nimb.2007.10.037. DOI
Baroudi A., García-Payo C., Khayet M. Structural, Mechanical, and Transport Properties of Electron Beam-Irradiated Chitosan Membranes at Different Doses. Polymers. 2018;10:117. doi: 10.3390/polym10020117. PubMed DOI PMC
Song J.-M., Shin D.W., Sohn J.-Y., Nho Y.C., Lee Y.M., Shin J. The effects of EB-irradiation doses on the properties of crosslinked SPEEK membranes. J. Membr. Sci. 2013;430:87–95. doi: 10.1016/j.memsci.2012.12.007. DOI
Žitný R., Landfeld A., Skočilas J., Stancl J., Flegl V., Zachariášová M., Jírů M., Houška M. Hydraulic characteristic of collagen. Czech J. Food Sci. 2016;33:479–485. doi: 10.17221/62/2015-CJFS. DOI
Bano I., Ghauri M.A., Yasin T., Huang Q., Palaparthi A.D. Characterization and potential applications of gamma irradiated chitosan and its blends with poly(vinyl alcohol) Int. J. Biol. Macromol. 2014;65:81–88. doi: 10.1016/j.ijbiomac.2014.01.015. PubMed DOI
García M.A., Pérez L., de la Paz N., González J., Rapado M., Casariego A. Effect of molecular weight reduction by gamma irradiation on chitosan film properties. Mater. Sci. Eng. C. 2015;55:174–180. doi: 10.1016/j.msec.2015.05.009. PubMed DOI
Labouriau A., Cady C., Gill J., Stull J., Ortiz-Acosta D., Henderson K., Hartung V., Quintana A., Celina M. Gamma irradiation and oxidative degradation of a silica-filled silicone elastomer. Polym. Degrad. Stab. 2015;116:62–74. doi: 10.1016/j.polymdegradstab.2015.03.009. DOI
Banik I., Bhowmick A.K. Influence of electron beam irradiation on the mechanical properties and crosslinking of fluorocarbon elastomer. Radiat. Phys. Chem. 1999;54:135–142. doi: 10.1016/S0969-806X(98)00218-7. DOI
Khatiwada S.P., Gohs U., Janke A., Jehnichen D., Heinrich G., Adhikari R. Influence of electron beam irradiation on the morphology and mechanical properties of styrene/butadiene triblock copolymers. Radiat. Phys. Chem. 2018;152:56–62. doi: 10.1016/j.radphyschem.2018.07.012. DOI
Cui C., Zhang Y. Effect of Electron Beam Irradiation on the Mechanical and Thermal Properties of Ternary Polyamide Copolymer. Macromol. Res. 2018;26:359–364. doi: 10.1007/s13233-018-6050-y. DOI
Chmielewski A., Haji-Saeid M., Ahmed S. Progress in radiation processing of polymers. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2005;236:44–54. doi: 10.1016/j.nimb.2005.03.247. DOI
Makuuchi K., Cheng S. Radiation Processing of Polymer Materials and Its Industrial Applications. John Wiley & Sons; Hoboken, NJ, USA: 2012.
Klüver E., Meyer M. Preparation, processing, and rheology of thermoplastic collagen. J. Appl. Polym. Sci. 2013;128:4201–4211. doi: 10.1002/app.38644. DOI
Landfeld A., Houška M., Skočilas J., Žitny R., Novotna P., Štangl J., Dostal M., Chvatil D. The effect of irradiation on Rheological and electrical properties of collagen. Appl. Rheol. 2016;26:35–41. doi: 10.3933/ApplRheol-26-43775. DOI
Štípek J., Skočilas J., Štancl J., Žitný R. Extrusion rheometry of collagen dough. Czech J. Food Sci. 2021;39:384–392. doi: 10.17221/265/2020-CJFS. DOI
Krist P., Bíla J. Microtrone Modelling and Control, in Nuclear Physics Methods and Accelerators in Biology and Medicine. Amer. Inst. Phys. (AIP) Conf. Proc. 2009;1204:183–185. doi: 10.1063/1.3295641. DOI
Holzapfel G.A., Gasser T.C., Ogden R. Comparison of a Multi-Layer Structural Model for Arterial Walls with a Fung-Type Model, and Issues of Material Stability. J. Biomech. Eng. 2004;126:264–275. doi: 10.1115/1.1695572. PubMed DOI
Properties of Bovine Collagen as Influenced by High-Pressure Processing