Effects of Extrusion and Irradiation on the Mechanical Properties of a Water-Collagen Solution

. 2022 Jan 31 ; 14 (3) : . [epub] 20220131

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35160567

Grantová podpora
21-07851S Grant agency of the Czech Republic

This article describes 1D extension tests on bovine collagen samples (8% collagen in water). At such a high collagen concentration, the mechanical properties of semi-solid samples can be approximated by hyperelastic models (two-parametric HGO and Misof models were used), or simply by Hooke's law and the modulus of elasticity E. The experiments confirm a significant increase in the E-modulus of the samples irradiated with high-energy electrons. The modulus E ~ 9 kPa of non-irradiated samples increases monotonically up to E ~ 250 kPa for samples absorbing an e-beam dose of ~3300 Gy. This amplification is attributed to the formation of cross-links by irradiation. However, E-modulus can be increased not only by irradiation but also by exposure to a high strain rate. For example, soft isotropic collagen extruded through a 200 mm long capillary increases the modulus of elasticity from 9 kPa to 30 kPa, and the increase is almost isotropic. This stiffening occurs when the corrugated collagen fibers are straightened and are aligned in the flow direction. It seems that the permanent structural changes caused by extrusion mitigate the effects of the ex post applied irradiation. Irradiation of extruded samples by 3300 Gy increases the modulus of E-elasticity only three times (from 30 kPa to approximately 90 kPa). Extruded and ex post irradiated samples show slight anisotropy (the stiffness in the longitudinal direction is on an average greater than the transverse stiffness).

Zobrazit více v PubMed

Kumar V., Caves J.M., Haller C.A., Dai E., Liu L., Grainger S., Chaikof E.L. Acellular vascular grafts generated from collagen and elastin analogs. Acta Biomater. 2013;9:8067–8074. doi: 10.1016/j.actbio.2013.05.024. PubMed DOI PMC

Deiber J.A., Peirotti M.B., Ottone M.L. Rheological characterization of edible films made from collagen colloidal particle suspensions. Food Hydrocoll. 2011;25:1382–1392. doi: 10.1016/j.foodhyd.2011.01.002. DOI

Skočilas J., Žitný R., Štancl J., Dostál M., Landfeld A., Houška M. Rheological properties of collagen matter predicted using an extrusion rheometer. J. Texture Stud. 2016;47:514–522. doi: 10.1111/jtxs.12194. DOI

Daar E., Kaabar W., Woods E., Lei C., Nisbet A., Bradley D. Atomic force microscopy and mechanical testing of bovine pericardium irradiated to radiotherapy doses. Radiat. Phys. Chem. 2014;96:176–180. doi: 10.1016/j.radphyschem.2013.09.017. DOI

Puxkandl R., Zizak I., Paris O., Keckes J., Tesch W., Bernstorff S., Purslow P., Fratzl P. Viscoelastic properties of collagen: Synchrotron radiation investigations and structural model. Philos. Trans. R. Soc. B Biol. Sci. 2002;357:191–197. doi: 10.1098/rstb.2001.1033. PubMed DOI PMC

Misof K., Rapp G., Fratzl P. A new molecular model for collagen elasticity based on synchrotron X-ray scattering evidence. Biophys. J. 1997;72:1376–1381. doi: 10.1016/S0006-3495(97)78783-6. PubMed DOI PMC

Gotoh T., Itoh M., Okuda T. The changes of electrochemical and mechanical properties through gamma irradiation of a collagen aqueous solution. Int. J. Appl. Radiat. Isot. 1977;28:933–937. doi: 10.1016/0020-708X(77)90057-6. DOI

Sionkowska A., Wisniewski M., Skopinska J., Poggi G., Marsano E., Maxwell C., Wess T. Thermal and mechanical properties of UV irradiated collagen/chitosan thin films. Polym. Degrad. Stab. 2006;91:3026–3032. doi: 10.1016/j.polymdegradstab.2006.08.009. DOI

Liu B., Harrell R., Davis R.H., Dresden M.H., Spira M. The effect of gamma irradiation on injectable human amnion collagen. J. Biomed. Mater. Res. 1989;23:833–844. doi: 10.1002/jbm.820230803. PubMed DOI

Mohamed F., Bradley D.A., Winlove C.P. Effect of ionizing radiation on extracellular matrix. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007;580:566–569. doi: 10.1016/j.nima.2007.05.236. DOI

Giammona G., Pitarresi G., Cavallaro G., Spadaro G. New biodegradable hydrogels based on an acryloylated polyaspartamide cross-linked by gamma irradiation. J. Biomater. Sci. Polym. Ed. 1999;10:969–987. doi: 10.1163/156856299X00568. PubMed DOI

Riedel S., Hietschold P., Krömmelbein C., Kunschmann T., Konieczny R., Knolle W., Mierke C.T., Zink M., Mayr S.G. Design of biomimetic collagen matrices by reagent-free electron beam induced crosslinking: Structure-property relationships and cellular response. Mater. Des. 2019;168:168. doi: 10.1016/j.matdes.2019.107606. DOI

Hennink W., van Nostrum C. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 2012;64:223–236. doi: 10.1016/j.addr.2012.09.009. PubMed DOI

Manaila E., Craciun G., Ighigeanu D., Lungu I., Dumitru M., Stelescu M. Electron Beam Irradiation: A Method for Degradation of Composites Based on Natural Rubber and Plasticized Starch. Polymers. 2021;13:1950. doi: 10.3390/polym13121950. PubMed DOI PMC

Jamal N.A., Anuar H., Bahri A.R.S. Enhancing the Mechanical Properties of Cross-Linked Rubber-Toughened Nanocomposites via Electron Beam Irradiation. J. Nanotechnol. 2011;2011:1–8. doi: 10.1155/2011/769428. DOI

Šarac T., Quiévy N., Gusarov A., Konstantinović M. Influence of γ -irradiation and temperature on the mechanical properties of EPDM cable insulation. Radiat. Phys. Chem. 2016;125:151–155. doi: 10.1016/j.radphyschem.2016.03.024. DOI

Zeid M.A., Rabie S., Nada A., Khalil A., Hilal R. Effect of gamma irradiation on ethylene propylene diene terpolymer rubber composites. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2007;266:111–116. doi: 10.1016/j.nimb.2007.10.037. DOI

Baroudi A., García-Payo C., Khayet M. Structural, Mechanical, and Transport Properties of Electron Beam-Irradiated Chitosan Membranes at Different Doses. Polymers. 2018;10:117. doi: 10.3390/polym10020117. PubMed DOI PMC

Song J.-M., Shin D.W., Sohn J.-Y., Nho Y.C., Lee Y.M., Shin J. The effects of EB-irradiation doses on the properties of crosslinked SPEEK membranes. J. Membr. Sci. 2013;430:87–95. doi: 10.1016/j.memsci.2012.12.007. DOI

Žitný R., Landfeld A., Skočilas J., Stancl J., Flegl V., Zachariášová M., Jírů M., Houška M. Hydraulic characteristic of collagen. Czech J. Food Sci. 2016;33:479–485. doi: 10.17221/62/2015-CJFS. DOI

Bano I., Ghauri M.A., Yasin T., Huang Q., Palaparthi A.D. Characterization and potential applications of gamma irradiated chitosan and its blends with poly(vinyl alcohol) Int. J. Biol. Macromol. 2014;65:81–88. doi: 10.1016/j.ijbiomac.2014.01.015. PubMed DOI

García M.A., Pérez L., de la Paz N., González J., Rapado M., Casariego A. Effect of molecular weight reduction by gamma irradiation on chitosan film properties. Mater. Sci. Eng. C. 2015;55:174–180. doi: 10.1016/j.msec.2015.05.009. PubMed DOI

Labouriau A., Cady C., Gill J., Stull J., Ortiz-Acosta D., Henderson K., Hartung V., Quintana A., Celina M. Gamma irradiation and oxidative degradation of a silica-filled silicone elastomer. Polym. Degrad. Stab. 2015;116:62–74. doi: 10.1016/j.polymdegradstab.2015.03.009. DOI

Banik I., Bhowmick A.K. Influence of electron beam irradiation on the mechanical properties and crosslinking of fluorocarbon elastomer. Radiat. Phys. Chem. 1999;54:135–142. doi: 10.1016/S0969-806X(98)00218-7. DOI

Khatiwada S.P., Gohs U., Janke A., Jehnichen D., Heinrich G., Adhikari R. Influence of electron beam irradiation on the morphology and mechanical properties of styrene/butadiene triblock copolymers. Radiat. Phys. Chem. 2018;152:56–62. doi: 10.1016/j.radphyschem.2018.07.012. DOI

Cui C., Zhang Y. Effect of Electron Beam Irradiation on the Mechanical and Thermal Properties of Ternary Polyamide Copolymer. Macromol. Res. 2018;26:359–364. doi: 10.1007/s13233-018-6050-y. DOI

Chmielewski A., Haji-Saeid M., Ahmed S. Progress in radiation processing of polymers. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2005;236:44–54. doi: 10.1016/j.nimb.2005.03.247. DOI

Makuuchi K., Cheng S. Radiation Processing of Polymer Materials and Its Industrial Applications. John Wiley & Sons; Hoboken, NJ, USA: 2012.

Klüver E., Meyer M. Preparation, processing, and rheology of thermoplastic collagen. J. Appl. Polym. Sci. 2013;128:4201–4211. doi: 10.1002/app.38644. DOI

Landfeld A., Houška M., Skočilas J., Žitny R., Novotna P., Štangl J., Dostal M., Chvatil D. The effect of irradiation on Rheological and electrical properties of collagen. Appl. Rheol. 2016;26:35–41. doi: 10.3933/ApplRheol-26-43775. DOI

Štípek J., Skočilas J., Štancl J., Žitný R. Extrusion rheometry of collagen dough. Czech J. Food Sci. 2021;39:384–392. doi: 10.17221/265/2020-CJFS. DOI

Krist P., Bíla J. Microtrone Modelling and Control, in Nuclear Physics Methods and Accelerators in Biology and Medicine. Amer. Inst. Phys. (AIP) Conf. Proc. 2009;1204:183–185. doi: 10.1063/1.3295641. DOI

Holzapfel G.A., Gasser T.C., Ogden R. Comparison of a Multi-Layer Structural Model for Arterial Walls with a Fung-Type Model, and Issues of Material Stability. J. Biomech. Eng. 2004;126:264–275. doi: 10.1115/1.1695572. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...