Constitutive modeling of human saphenous veins at overloading pressures

. 2015 May ; 45 () : 101-8. [epub] 20150207

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25700260
Odkazy

PubMed 25700260
DOI 10.1016/j.jmbbm.2015.01.023
PII: S1751-6161(15)00032-6
Knihovny.cz E-zdroje

In the present study, inflation tests with free axial extension of 15 human vena saphena magna were conducted ex vivo to obtain data suitable for multi-axial constitutive modeling at overloading conditions (pressures up to approximately 15kPa). Subsequently the data were fitted with a hyperelastic, nonlinear and anisotropic constitutive model based on the theory of the closed thick-walled tube. It was observed that initial highly deformable behavior (up to approximately 2.5kPa) in the pressure-circumferential stretch response is followed by progressive large strain stiffening. Contrary to that, samples were much stiffer in longitudinal direction, where the observed stretches were in the range 0.98-1.03 during the entire pressurization in most cases. The effect of possible residual stress was evaluated in a simulation of the intramural stress distribution with the opening angle prescribed to 0°, 10°, 20°, 30°, 40°, and 50°. The result suggests that the optimal opening angle making the stress distribution through the wall thickness uniform is about 40°. The material parameters presented here are suitable for use in mechanobiological simulations describing the adaptation of the autologous vein wall after bypass surgery.

Citace poskytuje Crossref.org

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...