OBJECTIVES: Comparisons of material hardness may be affected by the indentation size effect (ISE), which is characterized by increasing hardness values at decreasing loads. This study aimed to assess the influence of load, dwell time and measurement method on ISE in dental resin-based composites with different filler content. METHODS: Knoop (HK) and Vickers (HV) microindentation hardness of Filtek Ultimate Universal Restorative (FU) and Filtek Supreme Flowable Restorative (FF) was measured under different loads (0.098-2.96 N, i.e. 10-300 gf) and dwell times (5-30 s). Their effects on HK and HV were evaluated using repeated measures ANOVA, which was also used to compare the measurement methods. Coefficients of Meyer's equation, proportional specimen resistance (PSR) model and a modified PSR model were calculated using regression analyses. RESULTS: ISE was more pronounced for the highly-filled FU than for the less-filled FF, and HK was more susceptible to ISE than HV. The effect of dwell time was similar for both materials and measurement methods; hardness values decreased with dwell time, significantly between 5 s and 30 s. SIGNIFICANCE: The possible presence of ISE should be considered when determining measurement conditions for the microindentation hardness of dental resin-based composites. HV was found to be less sensitive to ISE and provided stable hardness values at lower loads than HK. Due to the high variability of composites, any hardness measurement should be preceded by mapping the effect of load to ensure that load-independent hardness is measured. If hardness values continue to decrease in the whole range of increasing loads, load-independent hardness can be calculated using the PSR model.
- MeSH
- složené pryskyřice * chemie MeSH
- testování materiálů * MeSH
- testy tvrdosti MeSH
- tvrdost * MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Surgical treatments of benign primary bone tumors of the femur face the challenge of limiting tissue damage and contamination while providing sufficient stabilization to avoid fracture. While no clear treatment guidelines exist, surgical treatment commonly consists of femoral fenestration and curettage with optional filling and plating of the defect. Mono- or bicortical plating of distal femoral defects aim to reduce fracture risk and have been shown to increase axial stability. However, it remains unclear whether plating increases torsional stability of the affected femur. QUESTIONS/PURPOSES: This biomechanical study aimed to determine how much additional stability can be achieved by mono- or bicortical plating of femoral defects after fenestration. The following hypotheses were investigated: 1. Preventive plating of distal femur bone defects enhances torsional stability when compared to femoral fenestration alone. 2. A condition close to the intact (nonpathological) bone can be achieved by bone plating. 3. Defect shape influences torsional stability. PATIENTS AND METHODS: Thiel embalmed human femora (n = 24) were left intact or subjected to the following surgical treatments (A) defect creation via fenestration, (B) defect with short monocortical plating, (C) defect with long bicortical plating. All femora were torsion tested in midstance position using pre-cycling and testing until failure. Quantitative computed tomography pre and post testing allowed bone mineral density calculation and crack path analysis. Finite element analysis provided insight into defect shape variations. RESULTS: Torsion experiments showed no relevant enhancement of torsional stability due to mono- or bicortical plating. There were no significant differences in maximum torque between unplated and plated femora with defect (defect: 35.38 ± 7.53 Nm, monocortical plating: 37.77 ± 9.82 Nm, bicortical plating: 50.27 ± 9.72 Nm, p > 0.05). Maximum torque for all treatment groups was significantly lower compared to intact femora (155-200 Nm, p < 0.001). Cracks originated predominantly from the proximal posterior corner of the defect and intersected with screw holes in plated femora. The influence of variations of the defect corner shapes had no significant influence on maximum torque and angle. CONCLUSION: This biomechanical study shows that mono- or bicortical plating is not an effective preventive treatment against torsional failure of femora with distal defects as the resulting maximum torque was drastically reduced compared to intact femora. Thus, the initial hypotheses have to be rejected. As habitual loading of the femur includes a combination of axial and torsional loading, the observed lack of prevention against torsional failure might help to explain the occurrence of fractures despite plating. Future research towards ameliorating clinical outcome should address the role of defect filling with bone cement or bone grafts regarding the improvement of torsional stability after primary bone tumor treatment in the femur.
- MeSH
- biomechanika MeSH
- femur * chirurgie MeSH
- kostní destičky * MeSH
- kyretáž MeSH
- lidé středního věku MeSH
- lidé MeSH
- mechanické testy MeSH
- senioři MeSH
- torze mechanická MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: This systematic review aims to identify previously used techniques in biomechanics to assess pelvic instability following pelvic injury, focusing on external fixation constructs. METHODS: A systematic literature search was conducted to include biomechanical studies and to exclude clinical trials. RESULTS: Of an initial 4666 studies found, 38 met the inclusion criteria. 84% of the included studies were retrieved from PubMed, Scopus, and Web of Science. The studies analysed 106 postmortem specimens, 154 synthetic bones, and 103 computational models. Most specimens were male (97% synthetic, 70% postmortem specimens). Both the type of injury and the classification system employed varied across studies. About 82% of the injuries assessed were of type C. Two different fixators were tested for FFPII and type A injury, five for type B injury, and fifteen for type C injury. Large variability was observed for external fixation constructs concerning device type and configuration, pin size, and geometry. Biomechanical studies deployed various methods to assess injury displacement, deformation, stiffness, and motion. Thereby, loading protocols differed and inconsistent definitions of failure were determined. Measurement techniques applied in biomechanical test setups included strain gauges, force transducers, and motion tracking techniques. DISCUSSION AND CONCLUSION: An ideal fixation method should be safe, stable, non-obstructive, and have low complication rates. Although biomechanical testing should ensure that the load applied during testing is representative of a physiological load, a high degree of variability was found in the current literature in both the loading and measurement equipment. The lack of a standardised test design for fixation constructs in pelvic injuries across the studies challenges comparisons between them. When interpreting the results of biomechanical studies, it seems crucial to consider the limitations in cross-study comparability, with implications on their applicability to the clinical setting.
- MeSH
- biomechanika MeSH
- externí fixátory MeSH
- fixace fraktur metody MeSH
- fraktury kostí * MeSH
- lidé MeSH
- pánevní kosti * chirurgie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
The study deals with the process of estimation of material parameters from uniaxial test data of arterial tissue and focuses on the role of transverse strains. Two fitting strategies are analyzed and their impact on the predictive and descriptive capabilities of the resulting model is evaluated. The standard fitting procedure (strategy A) based on longitudinal stress-strain curves is compared with the enhanced approach (strategy B) taking also the transverse strain test data into account. The study is performed on a large set of material data adopted from literature and for a variety of constitutive models developed for fibrous soft tissues. The standard procedure (A) ignoring the transverse strain test data is found rather hazardous, leading often to unrealistic predictions of the model exhibiting auxetic behaviour. In contrast, the alternative fitting method (B) ensures a realistic strain response of the model and is proved to be superior since it does not require any significant demands of computational effort or additional testing. The results presented in this paper show that even the artificial transverse strain data (i.e., not measured during testing but generated ex post based on assumed Poisson's ratio) are much less hazardous than total disregard of the transverse strain response.
- MeSH
- arterie * MeSH
- biologické modely * MeSH
- Publikační typ
- časopisecké články MeSH
New studies have shown the great potential of the combination of in situ enzymatically cross-linked hydrogels based on tyramine derivative of hyaluronic acid (HA-TA) with platelet-rich plasma (PRP) and platelet lysate in regenerative medicine. This study describes how the presence of PRP and platelet lysate affects the kinetics of gelation, viscoelastic properties, swelling ratio, and the network structure of HA-TA hydrogels and how the encapsulation of PRP in hydrogels affects the bioactivity of released PRP determined as the ability to induce cell proliferation. The properties of hydrogels were tuned by a degree of substitution and concentration of HA-TA derivatives. The addition of platelet derivatives to the reaction mixture slowed down the cross-linking reaction and reduced elastic modulus (G') and thus cross-linking efficiency. However, low-swellable hydrogels (7-190%) suitable for soft tissue engineering with G' 200-1800 Pa were prepared with a gelation time within 1 min. It was confirmed that tested cross-linking reaction conditions are suitable for PRP incorporation because the total bioactivity level of PRP released from HA-TA hydrogels was ≥87% and HA-TA content in the hydrogels and thus mesh size (285-482 nm) has no significant effect on the bioactivity level of released PRP.
Aortic dissection is a biomechanical phenomenon associated with a failure of internal cohesion, which manifests itself through the delamination of the aortic wall. The goal of this study is to deepen our knowledge of the delamination strength of the aorta. To achieve this, 661 peeling experiments were carried out with strips of the human aorta collected from 46 cadavers. The samples were ordered into groups with respect to (1) anatomical location, (2) orientation of the sample, and (3) extension rate used within the experiment. The obtained results are in accordance with the hypothesis that delamination resistance is not sensitive to the extension rates 0.1, 1, 10, and 50 mms-1. We arrived at this conclusion for all positions along the aorta investigated in our study. These were the thoracic ascending (AAs), thoracic descending (ADs), and the abdominal aorta (AAb), simultaneously considering both the longitudinal (L) as well as the circumferential (C) orientations of the samples. On the other hand, our results showed that the delamination strength differs significantly with respect to the anatomical position and orientation of the sample. The medians of the delamination strength were as follows, 4.1 in AAs-L, 3.2 in AAs-C, 3.1 in ADs-L, 2.4 in ADs-C, AAb-L in 3.6, and 2.7 in AAb-C case (all values are in 0.01·Nmm-1). This suggests that resistance to crack propagation should be an anisotropic property and that the aorta is inhomogeneous along its length from the point of view of delamination resistance. Finally, correlation analysis proved that the delamination strength of the human aorta significantly decreases with age.
- MeSH
- anizotropie MeSH
- aorta abdominalis MeSH
- aorta thoracica MeSH
- biomechanika MeSH
- disekce aorty * MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Biomechanical performance plays an important role in the long-term service of dental implants. Loosening and fatigue damage of the central screw are the most common problems. This research investigated the effect of the central screw taper angle on the loosening performance and fatigue characteristics of dental implants. Central screws with four taper angles, 30°, 60°, 90° and 180°, were processed and tested. The loosening performance of the screws under initial and postload conditions was compared. Then, the fatigue characteristics of dental implants was measured. Finally, the wear and fracture modes of the screws were observed. The damage locations were verified by finite element analysis (FEA). The results showed that the central screws with 30° taper had substantially better anti-loosening performance and less fretting wear. The central screws with 180° taper had a higher preload, resulting in a longer fatigue life. Furthermore, the fatigue fracture of the central screw occurred at the level of the first thread position, consistent with the FEA results. In the future clinical applications, central screws with a 30° taper angle may improve anti-loosening performance and prolong fatigue life by increasing the tightening torque.
The bonding performance of dental adhesives is most frequently evaluated using the micro-tensile bond strength (μTBS) test. Despite lacking evidence, peripheral specimens are often discarded to avoid regional variability. This study, therefore, examined whether μTBS to central and peripheral dentin differed. Dentin surfaces of extracted human molars were bonded with various self-etch adhesives, built up with a resin composite, cut into beams, and stressed in tension. Failure mode was classified as adhesive, cohesive in dentin, or other using scanning electron microscopy. Since cohesive failures in dentin were frequent and could confound μTBS results, the data from central/peripheral dentin were analyzed using a Weibull competing risk (CR) model distinguishing failure modes, and its outcomes were compared to a conventional failure mode non-distinguishing Weibull model. Based on the strength data of cohesively failed specimens, the CR model also estimated the strength of dentin. For comparison, the ultimate tensile strength (UTS) of dentin was measured in both regions. The conventional model suggested that peripheral μTBS was higher than central μTBS. Conversely, the CR model disclosed no significant difference in μTBS between the regions but indicated a higher strength of peripheral dentin. This finding was confirmed by UTS measurements, and further supported by the significantly higher incidence of cohesive failures in central dentin. Therefore, peripheral specimens can be used in the μTBS test as well as central ones, but a CR model should be used for statistical analysis if cohesive failures in dentin are frequent, as the strength of peripheral dentin is higher.
- MeSH
- dentin MeSH
- dentinová adheziva * MeSH
- lidé MeSH
- pevnost v tahu MeSH
- pryskyřičné cementy MeSH
- složené pryskyřice MeSH
- testování materiálů MeSH
- vazba zubní * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION: There is a striking difference in the reported mean response of abdominal aortic aneurysm tissue in academic literature depending on the type of tests (uniaxial vs biaxial) performed. In this paper, the hypothesis variability caused by differences in experimental protocols is explored using porcine aortic tissue as a substitute for aneurysmal tissue. METHODS: Nine samples of porcine aorta were created and both uniaxial and biaxial tests were performed. Three effects were investigated. (i) Effect of sample (non) preconditioning, (ii) effect of objective function used (normalised vs non-normalised), and (iii) effect of chosen procedure used for mean response calculation: constant averaging (CA) vs fit to averaged response (FAR) vs fit to all data (FAD). Both the overall shape of mean curve and mean initial stiffness were compared. RESULTS: (i) Non-preconditioning led to a much stiffer response, and initial stiffness was about three times higher for a non-preconditioned response based on uniaxial data compared to a preconditioned biaxial response. (ii) CA led to a much stiffer response compared to FAR and FAD procedures which gave similar results. (iii) Normalised objective function produced a mean response with six times lower initial stiffness and more pronounced nonlinearity compared to non-normalised objective function. DISCUSSION: It is possible to reproduce a mechanically inconsistent response purely by using the chosen experimental protocol. Non-preconditioned data from failure tests should be used for FE simulation of the elastic response of aneurysms. CA should not be used to obtain a mean response.
- MeSH
- aneurysma břišní aorty * MeSH
- aorta abdominalis MeSH
- aorta MeSH
- biomechanika MeSH
- mechanický stres MeSH
- počítačová simulace MeSH
- prasata MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
AIMS: The aim of this study was to answer the question whether our newly developed injectable biodegradable "self-setting" polymer-composite as a bone adhesive is a good "bone-glue" candidate to efficiently fix comminuted fractures of pig femoral bones used as an ex-vivo experimental model. METHODS: Mechanical properties of adhesive prepared from α-tricalcium phosphate (TCP) powder and thermogelling copolymer were optimized by selecting the appropriate composition with adhesion enhancers based on dopamine and sodium iodinate. Setting time and injectability were controlled by rheology. Ex-vivo experiments of fixed pig bones were provided in terms of either the three-point bending test of bending wedge type fractured pig femurs (with LCP) or the axial compression test of 45° oblique fractured femurs (without LCP) in physiological saline solution at 37 °C. Fractured bones treated with optimized adhesive before and after bending tests were imaged by X-ray microtomography (μCT). RESULTS: Based on the rheological measurement, the adhesive modified with both dopamine and sodium iodinate exhibited optimal thixotropic properties required for injection via thin 22 G needle. This optimal adhesive composition showed an 8 min lag phase (processing time) followed by fast increase in storage modulus at 37 °C up to 1 GPa within 110 min. Self-setting of dopamine/iodinate modified adhesive was completed in 48 h exhibiting the maximum strength at compression of 7.98 MPa ± 1.39 MPa. Whereas unmodified adhesive failed in glue-to-bone adhesion, dopamine and dopamine/iodinate modified adhesive used for 45° oblique fracture fixation showed good and similar strength at compression (3.05 and 2.79 MPa, respectively). However, significantly higher elasticity of about 250% exhibited adhesive with iodinate enhancer. Moreover, mechanical properties of B2 fractures fixed with both LCP and dopamine/iodinate adhesive were approaching closely to the properties of original bone. Excellent adhesion between the adhesive and the bone fragments was proved by μCT. CONCLUSION: The polymer-composite bone adhesive modified with dopamine/iodinate exhibited very good fixation ability of femoral artificial comminuted fractures in an experimental model.
- MeSH
- biomechanika MeSH
- diafýzy MeSH
- femur diagnostické zobrazování MeSH
- fixace fraktur MeSH
- fraktury femuru * diagnostické zobrazování MeSH
- kostní cementy * MeSH
- kostní destičky MeSH
- prasata MeSH
- vnitřní fixace fraktury MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH