Nonlinear anisotropic constitutive description of the human basilic vein and comparison with the vein of the lower limb
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, srovnávací studie
Grantová podpora
24-10597S
Grantová Agentura České Republiky
CZ.02.01.01/00/22_008/0004634
Operační program Jan Amos Komenský
PubMed
41160343
PubMed Central
PMC12618287
DOI
10.1007/s10237-025-02014-w
PII: 10.1007/s10237-025-02014-w
Knihovny.cz E-zdroje
- Klíčová slova
- Basilic vein, Constitutive model, Great saphenous vein, Hyperelasticity, Vascular access,
- MeSH
- anizotropie MeSH
- biomechanika MeSH
- dolní končetina * krevní zásobení MeSH
- lidé MeSH
- mechanický stres MeSH
- nelineární dynamika * MeSH
- vena saphena MeSH
- vény * fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
The number of patients undergoing hemodialysis has been steadily increasing in recent decades. Arteriovenous fistula (AVF) is the gold standard for ensuring vascular access in these patients. Despite the prominent role of AVFs in hemodialysis treatment, their maturation and long-term functionality continue to pose challenges as less than a third of fistulas remain patent without further interventions in a 3-year follow-up. Computational biomechanics has become an essential tool for clarifying mechanical conditions accompanying the pathogenesis of various vascular complications, including suboptimal maturation and AVF stenosis. Constitutive description plays a crucial role in the design of computational models and without it simulations remain only at the rigid tube level. However, literature on the mechanical properties and constitutive modeling of upper extremity veins is lacking. This study aims to fill this gap by characterizing the mechanical properties of the human basilic vein (BV) and comparing it to the great saphenous vein (GSV). Uniaxial tensile tests in two perpendicular directions were used to obtain the mechanical response of the tissue. The results suggest that BVs do not significantly differ from GSVs in their elastic properties expressed by means of the tangent modulus. Overall anisotropy, understood as the difference in elastic moduli obtained in different directions, seems to be reduced in BVs. The 4-fiber family exponential model of the strain energy density function was adopted to fit the experimental data. The model fitted the data well, as suggested by the coefficients of determination R2, which ranged from 0.97 to 0.99 for the majority of the average curves. The resulting parameter values can be used within the modeling of the mechanical behavior of veins in computational simulations of vascular access performance.
Zobrazit více v PubMed
Alam N, Newport D (2022) Influence of wall compliance on the flow patterns in a patient-specific brachio-cephalic arterio-venous fistula. Biomechanics 2(2):158–173. 10.3390/biomechanics2020014 DOI
Alastrué V, Peña E, Martínez MA, Doblaré M (2008) Experimental study and constitutive modelling of the passive mechanical properties of the ovine infrarenal vena cava tissue. J Biomech 41(14):3038–3045. 10.1016/j.jbiomech.2008.07.008 PubMed DOI
Alhosseini Hamedani B, Navidbakhsh M, Ahmadi Tafti H (2012) Comparison between mechanical properties of human saphenous vein and umbilical vein. Biomed Eng Online. 10.1186/1475-925X-11-59 PubMed DOI PMC
Amin M, Kunkel AG, Le VP, Wagenseil JE (2011) Effect of storage duration on the mechanical behavior of mouse carotid artery. J Biomech Eng. 10.1115/1.4004415 PubMed DOI PMC
Baek S, Gleason RL, Rajagopal KR, Humphrey JD (2007) Theory of small on large: potential utility in computations of fluid–solid interactions in arteries. Comput Methods Appl Mech Eng 196(31):3070–3078 DOI
Bai Z, Zhu L (2019) 3D simulation of a viscous flow past a compliant model of arteriovenous-graft annastomosis. Comput Fluids 181:403–415. 10.1016/j.compfluid.2019.02.006 DOI
Baláž P, Rokošný S, Bafrnec J, Whitley A, O’Neill S (2020) Repair of aneurysmal arteriovenous fistulae: a systematic review and meta-analysis. Eur J Vasc Endovasc Surg 59(4):614–623. 10.1016/j.ejvs.2019.07.033 PubMed DOI
Balaz P, Björck M (2015) True aneurysm in autologous hemodialysis fistulae: definitions, classification and indications for treatment. J Vasc Access 16(6):446–453. 10.5301/jva.5000391 PubMed DOI
Boerstra BA, Boenink R, Astley ME, Bonthuis M, ElHafeez SA, Monzón FA, Åsberg A (2024) The ERA registry annual report 2021: a summary. Clin Kidney J 17(10) PubMed PMC
Boghosian M, Cassel K, Hammes M, Funaki B, Kim S, Qian X, Wang X, Dhar P, Hines J (2014) Hemodynamics in the cephalic arch of a brachiocephalic fistula. Med Eng Phys 36(7):822–830. 10.1016/j.medengphy.2014.03.001 PubMed DOI PMC
Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press
Bozzetto M, Ene-Iordache B, Remuzzi A (2016) Transitional flow in the venous side of patient-specific arteriovenous fistulae for hemodialysis. Ann Biomed Eng 44(8):2388–2401. 10.1007/s10439-015-1525-y PubMed DOI
Bozzetto M, Brambilla P, Rota S, Ene-Iordache B, Sironi S, Remuzzi G, Remuzzi A (2018) Toward longitudinal studies of hemodynamically induced vessel wall remodeling. Int J Artif Organs 41(11):714–722. 10.1177/0391398818784207 PubMed DOI
Bozzetto M, Remuzzi A, Valen-Sendstad K (2024) Flow-induced high frequency vascular wall vibrations in an arteriovenous fistula: a specific stimulus for stenosis development? Phys Eng Sci Med 47(1):187–197. 10.1007/s13246-023-01355-z PubMed DOI PMC
Brescia MJ, Cimino JE, Appel K, Hurwich BJ (1966) Chronic hemodialysis using venipuncture and a surgically created arteriovenous fistula. N Engl J Med 275(20):1089–1092. 10.1056/NEJM196611172752002 PubMed DOI
Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292(3):H1209–H1224. 10.1152/ajpheart.01047.2006 PubMed DOI
Chow M-J, Zhang Y (2011) Changes in the mechanical and biochemical properties of aortic tissue due to cold storage. J Surg Res 171(2):434–442. 10.1016/j.jss.2010.04.007 PubMed DOI
Cunnane CV, Cunnane EM, Walsh MT (2017) A review of the hemodynamic factors believed to contribute to vascular access dysfunction. Cardiovasc Eng Technol 8(3):280–294. 10.1007/s13239-017-0307-0 PubMed DOI
de Villiers AM, McBride AT, Reddy BD, Franz T, Spottiswoode BS (2018) A validated patient-specific FSI model for vascular access in haemodialysis. Biomech Model Mechanobiol 17(2):479–497. 10.1007/s10237-017-0973-8 PubMed DOI
Decorato I, Kharboutly Z, Vassallo T, Penrose J, Legallais C, Salsac A-V (2014) Numerical simulation of the fluid structure interactions in a compliant patient-specific arteriovenous fistula. Int J Numer Methods Biomed Eng 30(2):143–159. 10.1002/cnm.2595 PubMed DOI
Desch GW, Weizsäcker HW (2007) A model for passive elastic properties of rat vena cava. J Biomech 40(14):3130–3145. 10.1016/j.jbiomech.2007.03.028 PubMed DOI
Donovan DL, Schmidt SP, Townshend SP, Njus GO, Sharp WV (1990) Material and structural characterization of human saphenous vein. J Vasc Surg 12(5):531–537. 10.1067/mva.1990.22707 PubMed DOI
Eiken O, Kölegård R (2004) Comparison of vascular distensibility in the upper and lower extremity. Acta Physiol Scand 181(3):281–287. 10.1111/j.1365-201X.2004.01291.x PubMed DOI
Fulker D, Ene-Iordache B, Barber T (2018) High-resolution computational fluid dynamic simulation of haemodialysis cannulation in a patient-specific arteriovenous fistula. J Biomech Eng 140:3. 10.1115/1.4038289 PubMed DOI
Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer Science and Business Media
García-Vilana S, Sánchez-Molina D (2022) Age effects on the mechanical behavior of human cerebral bridging veins. Clin Biomech. 10.1016/j.clinbiomech.2022.105792 PubMed DOI
García-Vilana S, Sánchez-Molina D, Llumà J, Galtés I, Velázquez-Ameijide J, Rebollo-Soria MC, Arregui-Dalmases C (2021) Viscoelastic characterization of parasagittal bridging veins and implications for traumatic brain injury: a pilot study. Bioengineering. 10.3390/bioengineering8100145 PubMed DOI PMC
Gasser TC (2021) Vascular biomechanics. Springer International Publishing. 10.1007/978-3-030-70966-2 DOI
Hashmi SF, Krishnamoorthy B, Critchley WR, Walker P, Bishop PW, Venkateswaran RV, Fildes JE, Yonan N (2015) Histological and immunohistochemical evaluation of human saphenous vein harvested by endoscopic and open conventional methods. Interact Cardiovasc Thorac Surg 20(2):178–185. 10.1093/icvts/ivu359 PubMed DOI
Heindel P, Yu P, Feliz JD, Hentschel DM, Burke SK, Al-Omran M, Bhatt DL, Belkin M, Ozaki CK, Hussain MA (2022) Radiocephalic arteriovenous fistula patency and use. Ann Surg Open. 10.1097/AS9.0000000000000199 PubMed DOI PMC
Hemmasizadeh A, Darvish K, Autieri M (2012) Characterization of changes to the mechanical properties of arteries due to cold storage using nanoindentation tests. Ann Biomed Eng 40(7):1434–1442. 10.1007/s10439-011-0506-z PubMed DOI PMC
Hernández Q, Peña E (2016) Failure properties of vena cava tissue due to deep penetration during filter insertion. Biomech Model Mechanobiol 15(4):845–856. 10.1007/s10237-015-0728-3 PubMed DOI
Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley
Holzapfel GA, Ogden RW (2010) Constitutive modelling of arteries. Proc R Soc A: Math Phys Eng Sci 466(2118):1551–1597. 10.1098/rspa.2010.0058 DOI
Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elasticity 61(1/3):1–48. 10.1023/A:1010835316564 DOI
Holzapfel GA, Niestrawska JA, Ogden RW, Reinisch AJ, Schriefl AJ (2015) Modelling non-symmetric collagen fibre dispersion in arterial walls. J R Soc Interface. 10.1098/rsif.2015.0188 PubMed DOI PMC
Horný L, Netušil M, Daniel M (2014) Limiting extensibility constitutive model with distributed fibre orientations and ageing of abdominal aorta. J Mech Behav Biomed Mater 38:39–51. 10.1016/j.jmbbm.2014.05.021 PubMed DOI
Huber TS, Berceli SA, Scali ST, Neal D, Anderson EM, Allon M, Cheung AK, Dember LM, Himmelfarb J, Roy-Chaudhury P, Vazquez MA, Alpers CE, Robbin ML, Imrey PB, Beck GJ, Farber AM, Kaufman JS, Kraiss LW, Vongpatanasin W et al (2021) Arteriovenous fistula maturation, functional patency, and intervention rates. JAMA Surg. 10.1001/jamasurg.2021.4527 PubMed DOI PMC
Huberts W, Bode AS, Kroon W, Planken RN, Tordoir JHM, van de Vosse FN, Bosboom EMH (2012) A pulse wave propagation model to support decision-making in vascular access planning in the clinic. Med Eng Phys 34(2):233–248. 10.1016/j.medengphy.2011.07.015 PubMed DOI
Humphrey JD (2002) Cardiovascular solid mechanics. Springer, New York. 10.1007/978-0-387-21576-1
Itskov M (2019) Tensor algebra and tensor analysis for engineers. Springer International Publishing. 10.1007/978-3-319-98806-1
Jadidi M, Habibnezhad M, Anttila E, Maleckis K, Desyatova A, MacTaggart J, Kamenskiy A (2020) Mechanical and structural changes in human thoracic aortas with age. Acta Biomater 103:172–188. 10.1016/j.actbio.2019.12.024 PubMed DOI PMC
Kamenskiy AV, Pipinos II, MacTaggart JN, Jaffar Kazmi SA, Dzenis YA (2011) Comparative analysis of the biaxial mechanical behavior of carotid wall tissue and biological and synthetic materials used for carotid patch angioplasty. J Biomech Eng. 10.1115/1.4005434 PubMed DOI PMC
Kamenskiy AV, Pipinos II, Dzenis YA, Phillips NY, Desyatova AS, Kitson J, Bowen R, MacTaggart JN (2015) Effects of age on the physiological and mechanical characteristics of human femoropopliteal arteries. Acta Biomater 11:304–313. 10.1016/j.actbio.2014.09.050 PubMed DOI
Kamenskiy A, Seas A, Deegan P, Poulson W, Anttila E, Sim S, Desyatova A, MacTaggart J (2017) Constitutive description of human femoropopliteal artery aging. Biomech Model Mechanobiol 16(2):681–692. 10.1007/s10237-016-0845-7 PubMed DOI PMC
Karimi A, Navidbakhsh M, Kudo S (2015) A comparative study on the mechanical properties of the healthy and varicose human saphenous vein under uniaxial loading. J Med Eng Technol 39(8):490–497. 10.3109/03091902.2015.1086030 PubMed DOI
Kulus MJ, Golema W, Jurek T, Jasiński R (2024) Histological analysis of forearm superficial veins structure. Folia Morphol 83(2):374–381. 10.5603/fm.96131 PubMed DOI
Lampridis S, George SJ (2021) Nonautologous grafts in coronary artery bypass surgery: a systematic review. Ann Thorac Surg 112(6):2094–2103. 10.1016/j.athoracsur.2020.11.028 PubMed DOI
Lawson JH, Niklason LE, Roy-Chaudhury P (2020) Challenges and novel therapies for vascular access in haemodialysis. Nat Rev Nephrol 16(10):586–602. 10.1038/s41581-020-0333-2 PubMed DOI PMC
Li W (2018a) Biomechanical property and modelling of venous wall. Prog Biophys Mol Biol 133:56–75. 10.1016/j.pbiomolbio.2017.11.004 PubMed DOI
Li W (2018b) Constitutive laws with damage effect for the human great saphenous vein. J Mech Behav Biomed Mater 81:202–213. 10.1016/j.jmbbm.2018.02.027 PubMed DOI
Mallis P, Kostakis A, Stavropoulos-Giokas C, Michalopoulos E (2020) Future perspectives in small-diameter vascular graft engineering. Bioengineering. 10.3390/bioengineering7040160 PubMed DOI PMC
Marcinnò F, Vergara C, Giovannacci L, Quarteroni A, Prouse G (2024) Computational fluid-structure interaction analysis of the end-to-side radio-cephalic arteriovenous fistula. Comput Methods Programs Biomed. 10.1016/j.cmpb.2024.108146 PubMed DOI
Marin ML, Gordon RE, Veith FJ, Panetta TF, Sales CM, Wengerter KR (1994) Human greater saphenous vein: histologic and ultrastructural variation. Cardiovasc Surg 2(1):56–62. 10.1177/096721099400200113 PubMed DOI
McGah PM, Leotta DF, Beach KW, Aliseda A (2014) Effects of wall distensibility in hemodynamic simulations of an arteriovenous fistula. Biomech Model Mechanobiol 13(3):679–695. 10.1007/s10237-013-0527-7 PubMed DOI PMC
Ng O, Gunasekera SD, Thomas SD, Varcoe RL, Barber TJ (2023) The effect of assumed boundary conditions on the accuracy of patient-specific CFD arteriovenous fistula model. Comput Methods Biomech Biomed Eng: Imaging vis 11(1):31–43. 10.1080/21681163.2022.2040054 DOI
Noordzij M, Jager KJ, van der Veer SN, Kramar R, Collart F, Heaf JG, Stojceva-Taneva O, Leivestad T, Buturovic-Ponikvar J, Benítez Sánchez M, Moreso F, Prütz KG, Severn A, Wanner C, Vanholder R, Ravani P (2014) Use of vascular access for haemodialysis in Europe: a report from the ERA-EDTA registry. Nephrol Dial Transplant 29(10):1956–1964 PubMed DOI
Ogden RW (1997) Non-linear elastic deformations. Dover Publications. http://www.loc.gov/catdir/description/dover031/97016162.html
Pfister M, d’Avalos LV, Müller PC, de Rougemont O, Bonani M, Kobe A, Puippe G, Nickel F, Rössler F (2023) Long-term patency of arteriovenous fistulas for hemodialysis: a decade’s experience in a transplant unit. Hemodial Int 27(4):388–399. 10.1111/hdi.13110 PubMed DOI
Prim DA, Zhou B, Hartstone-Rose A, Uline MJ, Shazly T, Eberth JF (2016) A mechanical argument for the differential performance of coronary artery grafts. J Mech Behav Biomed Mater 54:93–105. 10.1016/j.jmbbm.2015.09.017 PubMed DOI PMC
Prim DA, Lane BA, Ferruzzi J, Shazly T, Eberth JF (2021) Evaluation of the stress-growth hypothesis in saphenous vein perfusion culture. Ann Biomed Eng 49(1):487–501. 10.1007/s10439-020-02582-1 PubMed DOI PMC
Qiu J, Zheng Y, Hu J, Liao D, Gregersen H, Deng X, Fan Y, Wang G (2014) Biomechanical regulation of vascular smooth muscle cell functions in vitro to in vivo understanding: from in vitro to in vivo understanding. J R Soc Interface 11(90) PubMed PMC
Rangel JF, de Almeida Santos WB, de Carvalho Costa TH, de Bessa KL, Melo JDD (2023) Pressure analysis in rigid and flexible real arteriovenous fistula with thickness variation in vitro. J Funct Biomater. 10.3390/jfb14060310 PubMed DOI PMC
Robinson BM, Akizawa T, Jager KJ, Kerr PG, Saran R, Pisoni RL (2016) Factors affecting outcomes in patients reaching end-stage kidney disease worldwide: differences in access to renal replacement therapy, modality use, and haemodialysis practices. Lancet 388(10041):294–306 PubMed DOI PMC
Rojas MG, Pereira-Simon S, Zigmond ZM, Varona Santos J, Perla M, Santos Falcon N, Stoyell-Conti FF, Salama A, Yang X, Long X, Duque JC, Salman LH, Tabbara M, Martinez L, Vazquez-Padron RI (2024) Single-cell analyses offer insights into the different remodeling programs of arteries and veins. Cells. 10.3390/cells13100793 PubMed DOI PMC
Santoro D, Benedetto F, Mondello P, Spinelli F, Ricciardi CA, Cernaro V, Buemi M, Pipito’ N, Barilla’ D (2014) Vascular access for hemodialysis: current perspectives. Int J Nephrol Renovasc Dis 7:281–294. 10.2147/IJNRD.S46643 PubMed DOI PMC
Sassani SG, Theofani A, Tsangaris S, Sokolis DP (2013) Time-course of venous wall biomechanical adaptation in pressure and flow-overload: assessment by a microstructure-based material model. J Biomech 46(14):2451–2462. 10.1016/j.jbiomech.2013.07.011 PubMed DOI
Schmidli J, Widmer MK, Basile C et al (2018) Editor’s choice—vascular access: 2018 clinical practice guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg 55:757–818. 10.1016/j.ejvs.2018.02.001 PubMed DOI
Schroeder F, Polzer S, Slažanský M, Man V, Skácel P (2018) Predictive capabilities of various constitutive models for arterial tissue. J Mech Behav Biomed Mater 78:369–380. 10.1016/j.jmbbm.2017.11.035 PubMed DOI
Sokolis DP (2013) Experimental investigation and constitutive modeling of the 3D histomechanical properties of vein tissue. Biomech Model Mechanobiol 12(3):431–451. 10.1007/s10237-012-0410-y PubMed DOI
Stel VS, Boenink R, Astley ME, Boerstra BA, Radunovic D, Skrunes R, San Millán JCR, Slon Roblero MF, Bell S, Ucio Mingo P, Ten Dam MAGJ, Ambühl PM, Resic H, Rodríguez Arévalo OL, Aresté-Fosalba N, Tort i Bardolet J, Lassalle M, Trujillo-Alemán S, Indriadason OS et al (2024) A comparison of the epidemiology of kidney replacement therapy between Europe and the United States: 2021 data of the ERA Registry and the USRDS. Nephrol Dial Transplant 39(10):1593–1603. 10.1093/ndt/gfae040 PubMed DOI PMC
Stella S, Vergara C, Giovannacci L, Quarteroni A, Prouse G (2019) Assessing the disturbed flow and the transition to turbulence in the arteriovenous fistula. J Biomech Eng 141(10):101010. 10.1115/1.4043448 PubMed DOI
Taber LA (2004) Nonlinear theory of elasticity. World Scientific. 10.1142/5452
Taber LA (2020) Continuum modeling in mechanobiology. Springer International Publishing. 10.1007/978-3-030-43209-6
Thiene G, Miazzi P, Valsecchi M, Valente M, Bortolotti U, Casarotto D, Gallucci V (1980) Histological survey of the saphenous vein before its use as autologous aortocoronary bypass graft. Thorax 35(7):519–522. 10.1136/thx.35.7.519 PubMed DOI PMC
Truesdell C, Noll W, Antman SS (eds) (2004) The non-linear field theories of mechanics. Springer Berlin Heidelberg. 10.1007/978-3-662-10388-3
United States Renal Data System (2024) USRDS Annual Data Report: epidemiology of kidney disease in the United States
Ventre J, Abou Taam S, Fullana JM, Lagrée P-Y (2021) Distribution of flow in an arteriovenous fistula using reduced-order models. J Biomech Eng. 10.1115/1.4051282 PubMed DOI
Veselý J, Horný L, Chlup H, Adámek T, Krajíček M, Žitný R (2015) Constitutive modeling of human saphenous veins at overloading pressures. J Mech Behav Biomed Mater 45:101–108. 10.1016/j.jmbbm.2015.01.023 PubMed DOI
Weisbecker H, Unterberger MJ, Holzapfel GA (2015) Constitutive modelling of arteries considering fibre recruitment and three-dimensional fibre distribution. J R Soc Interface. 10.1098/rsif.2015.0111 PubMed DOI PMC
Weizsäcker HW (1988) Passive elastic properties of the rat abdominal vena cava. Pflügers Arch Eur J Physiol 412(1–2):147–154. 10.1007/BF00583744 PubMed DOI
Yang C-Y, Li M-C, Lan C-W, Lee W-J, Lee C-J, Wu C-H, Tang J-M, Niu Y-Y, Lin Y-P, Shiu Y-T, Cheung AK, Lee Y-HW, Lee OK-S, Chien S, Tarng D-C (2020) The anastomotic angle of hemodialysis arteriovenous fistula is associated with flow disturbance at the venous stenosis location on angiography. Front Bioeng Biotechnol 8:5. 10.3389/fbioe.2020.00846 PubMed DOI PMC
Yu Y, Cai Y, Yang F, Yang Y, Cui Z, Shi D, Bai R (2024) Vascular smooth muscle cell phenotypic switching in atherosclerosis. Heliyon. 10.1016/j.heliyon.2024.e37727 PubMed DOI PMC
Zeinali-Davarani S, Choi J, Baek S (2009) On parameter estimation for biaxial mechanical behavior of arteries. J Biomech 42(4):524–530. 10.1016/j.jbiomech.2008.11.022 PubMed DOI
Zhao J, Jesper Andreasen J, Yang J, Steen Rasmussen B, Liao D, Gregersen H (2007) Manual pressure distension of the human saphenous vein changes its biomechanical properties—implication for coronary artery bypass grafting. J Biomech 40(10):2268–2276. 10.1016/j.jbiomech.2006.10.014 PubMed DOI
Zhu L, Sakai K (2021) Simulation of blood flow past distal arteriovenous-graft anastomosis with intimal hyperplasia. Phys Fluids. 10.1063/5.0051517 DOI