Three-layer collagen-based vascular graft designed for low-flow peripheral vascular reconstructions

. 2019 Mar ; 17 (1) : 52. [epub] 20190124

Status PubMed-not-MEDLINE Jazyk angličtina Země Polsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34907746

Grantová podpora
AZV ČR 15-27941A Ministry of Health of the Czech Republic - Czech Republic

INTRODUCTION: The aim of this study was to develop a prototype of an artificial blood vessel which has similar mechanical properties to a human saphenous vein graft and to experimentally verify the function of the prosthesis via ovine carotid bypass implantation. MATERIAL AND METHODS: The prototype of an artificial graft prosthesis for low flow was developed and manufactured from a collagenous matrix and reinforcing polyester mesh. We compared the results of both the pressurisation and the mechanical stress evaluation tests of VSM with four types of hybrid vascular graft. The most similar graft (type II) was chosen for the first ovine model implantation. RESULTS: Dominant behavior e.g. mechanical response of VSM graft in plots of circumferential and axial stress during loading is observed in circumferential direction. Average results of used VSM showed area of ideal mechanical response and the properties of artificial blood vessels were fitted into this area. Developed graft remained patent after 161 days of follow up in ovine model. CONCLUSIONS: The mechanical properties of the graft were designed and adjusted to be similar to the behaviour of human saphenous veins. This approach showed promising results and enhanced the final performance of the prosthesis.

Zobrazit více v PubMed

Ambler GK, Twine CP (2018). Graft type for femoro-popliteal bypass surgery. Cochrane Database Syst Rev11 (2): CD001487. DOI: 10.1002/14651858.CD001487.pub3 PubMed DOI

Blakemore AH, Voorhees AB Jr. (1954). The use of tubes constructed from vinyon N cloth in bridging arterial defects; experimental and clinical. Ann Surg 140(3): 324-334. PubMed DOI

de Valence S, Tille JC, Giliberto JP, Mrowczynski W, Gurny R, Walpoth BH, Möller M (2012). Advantages of bilayered vascular grafts for surgical applicability and tissue regeneration. Acta Biomater 8(11): 3914-3920. DOI: 10.1016/j.actbio.2012.06.035. PubMed DOI

Greenwald SE, Berry CL (2000). Improving vascular grafts: the importance of mechanical and haemodynamic properties. J Pathol 190(3): 292-299. DOI: 10.1002/(SICI)1096-9896(200002)190:33.0.CO;2-S. DOI

Heyligers JM, Arts CH, Verhagen HJ, de Groot PG, Moll FL (2005). Improving small-diameter vascular grafts: From the application of an endothelial cell lining to the construction of atissue-engineered blood vessel. Ann Vasc Surg 19(3): 448-456. DOI: 10.1007/s10016-005-0026-0. PubMed DOI

Horný L, Netušil M, Voňavková T (2014). Axial prestretch and circumferential distensibility in biomechanics of abdominal aorta. Biomech Model Mechanobiol 13(4): 783-799. DOI: 10.1007/s10237-013-0534-8. PubMed DOI

Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM (2005). Current status of prosthetic bypass grafts: A review. J Biomed Mater Res B Appl Biomater 74(1): 570-581. DOI: 10.1002/jbm.b.30247. PubMed DOI

Khan R, Khan MH, Bey A (2011). Use of collagen as an implantable material in the reconstructive procedures - an overview. Biol Med 3(4): 25-32.

Kunlin J (1953). Venous grafts. J Int Chir 13(3): 313-319. PubMed

Ravi S, Chaikof EL (2010). Biomaterials for vascular tissue engineering. Regen Med 5(1): 107-120. DOI: 10.2217/rme.09.77. PubMed DOI

Sarkar S, Schmitz-Rixen T, Hamilton G, Seifalian AM (2007). Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: a review. Med Biol Eng Comput 45(4): 327-336. DOI: 10.1007/s11517-007-0176-z. PubMed DOI

Singh C, Wong CS, Wang X (2015). Medical textiles as vascular implants and their success to mimic natural arteries. J Funct Biomater 6(3): 500-525. DOI: 10.3390/jfb6030500. PubMed DOI

Veselý J, Hadraba, D, Chlup H, Horný L, Adámek T, Žitný R (2014). Constitutive modelling and histology of vena saphena. Appl Mech Mater 486: 249-254.

Veselý J, Chlup H, Krajíček M, Žitný R (2015a). Mechanical properties of biological composite reinforced by polyester mesh. In: 53rd Experimental stress analysis. Praha: Czech Technical University in Prague, pp. 466-468.

Veselý J, Horný L, Chlup H, Adámek T, Krajíček M, Žitný R (2015b). Constitutive modeling of human saphenous veins at overloading pressures. J Mech Behav Biomed Mater 45: 101-108. DOI: 10.1016/j.jmbbm.2015.01.023. PubMed DOI

Veselý J, Horný L, Chlup H, Beran M, Krajíček M, Žitný R (2015c). Effect of polyvinyl alcohol concentration on the mechanical properties of collagen/polyvinyl alcohol blends. Appl Mech Mater 732: 161-164. DOI: 10.4028/www.scientific.net/AMM.732.161. DOI

Wang X, Lin P, Yao Q, Chen C (2007). Development of small-diameter vascular grafts. World J. Surg 31(4): 682-689. DOI: 10.1007/s00268-006-0731-z. PubMed DOI

Williams SK, Kleinert LB, Patula-Steinbrenner V (2011). Accelerated neovascularization and endothelialization of vascular grafts promoted by covalently bound laminin type 1. J Biomed Mater Res A 99(1): 67-73. DOI: 10.1002/jbm.a.33138. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace