Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
ERC-SyG-2013-610028 IMBALANCE-P
European Research Council Synergy
CGL2016-79835-P
Spanish Government
SGR 2017-1005
Catalan Government
PubMed
31912629
DOI
10.1111/gcb.14981
Knihovny.cz E-zdroje
- Klíčová slova
- anthropogenic global shifts, biodiversity, biospheric N and P concentrations, ecosystem productivity, food security, human health, soil and plant N:P ratios, water,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The availability of carbon (C) from high levels of atmospheric carbon dioxide (CO2 ) and anthropogenic release of nitrogen (N) is increasing, but these increases are not paralleled by increases in levels of phosphorus (P). The current unstoppable changes in the stoichiometries of C and N relative to P have no historical precedent. We describe changes in P and N fluxes over the last five decades that have led to asymmetrical increases in P and N inputs to the biosphere. We identified widespread and rapid changes in N:P ratios in air, soil, water, and organisms and important consequences to the structure, function, and biodiversity of ecosystems. A mass-balance approach found that the combined limited availability of P and N was likely to reduce C storage by natural ecosystems during the remainder of the 21st Century, and projected crop yields of the Millennium Ecosystem Assessment indicated an increase in nutrient deficiency in developing regions if access to P fertilizer is limited. Imbalances of the N:P ratio would likely negatively affect human health, food security, and global economic and geopolitical stability, with feedbacks and synergistic effects on drivers of global environmental change, such as increasing levels of CO2 , climatic warming, and increasing pollution. We summarize potential solutions for avoiding the negative impacts of global imbalances of N:P ratios on the environment, biodiversity, climate change, food security, and human health.
CREAF Cerdanyola del Valles Spain
CSIC Global Ecology Unit CREAF CSIC UAB Bellaterra Spain
Global Change Research Institute Czech Academy of Sciences Brno Czech Republic
Research Group Plants and Ecosystems Department of Biology University of Antwerp Wilrijk Belgium
Zobrazit více v PubMed
Aanderud, Z. T., Saurey, S., Ball, B. A., Wall, D. H., Barrett, J. E., Muscarella, M. E., … Adams, B. J. (2018). Stoichiometric shifts in soil C:N:P promote bacterial taxa dominance, maintain biodiversity, and deconstruct community assemblages. Frontiers in Microbiology, 9, 1401. https://doi.org/10.3389/fmicrob.2018.01401
Abbas, M., Ebeling, A., Oelmann, Y., Ptacnik, R., Roscher, C., Weigelt, A., … Hillebrand, H. (2013). Biodiversity effects on plant stoichiometry. PLoS ONE, 8(3), e58179. https://doi.org/10.1371/journal.pone.0058179
Adhya, T. K., Kumar, N., Reddy, G., Podile, A. R., Bee, H., & Samantaray, B. (2015). Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils. Current Science, 108, 1280-1287.
Aerts, R., van Bodegom, P. M., & Cornelisse, J. H. C. (2012). Litter stoichiometric traits of plant species of high-latitude ecosystems show high responsiveness to global change without causing strong variation in litter decomposition. New Phytologist, 196, 181-188. https://doi.org/10.1111/j.1469-8137.2012.04256.x
Ågren, G. I. (2004). The C:N:P stoichiometry of autotrophs-Theory and observations. Ecology Letters, 7, 185-191. https://doi.org/10.1111/j.1461-0248.2004.00567.x
Akobeng, A. K., & Thomas, A. G. (2008). Systematic review: Tolerable amount of gluten for people with coeliac disease. Alimentary Pharmacology & Therapeutics, 27, 1044-1052. https://doi.org/10.1111/j.1365-2036.2008.03669.x
Alexander, H., Jenkins, B. D., Rynearson, T. A., & Dyhrman, S. T. (2015). Metatranscriptome analyses indicate resource partitioning between diatoms in the field. Proceedings of the National Academy of Sciences of the United States of America, 112, E2182-E2190. https://doi.org/10.1073/pnas.1421993112
Apple, J. L., Wink, M., Wills, S. E., & Bishop, J. G. (2009). Successional change in phosphorus stoichiometry explains the diverse relationships between herbivory and lupin density on Mount St. Helens. PLoS ONE, 4, e7807. https://doi.org/10.1371/journal.pone.0007807
Aragon, R., Sardans, J., & Penuelas, J. (2014). Soil enzymes associated with carbon and nitrogen cycling in invaded and native secondary forests of northwestern Argentina. Plant and Soil, 384, 169-183. https://doi.org/10.1007/s11104-014-2192-8
Arai, Y., & Livi, K. J. (2013). Underassessed phosphorus fixation mechanisms in soil sand fraction. Geoderma, 192, 422-429. https://doi.org/10.1016/j.geoderma.2012.06.021
Arbuckle, K. E., & Downing, J. A. (2001). The influence of watershed land use on lake in a predominantly agricultural landscape. Limnology and Oceanography, 46, 970-975. https://doi.org/10.4319/lo.2001.46.4.0970
Arnold, K. H., Shreeve, R. S., Atkinson, A., & Clarke, A. (2004). Growth rate of Antarctic krill, Euphasia superba: Comparison of the instantaneous growth rate method with nitrogen and phosphorus stoichiometry. Limnology and Oceanography, 49, 2152-2161. https://doi.org/10.4319/lo.2004.49.6.2152
Bai, Z., Ma, L., Ma, W., Qin, W., Velthof, G. L., Onema, O., & Zhang, F. (2016). Changes on phosphorus use and losses in the food chain of China during 1950-2010 and forecast for 2030. Nutrient Cycles in Agroecosystems, 104, 361-372. https://doi.org/10.1007/s10705-015-9737-y
Ballantyne, F. IV, Menge, D. N. L., Ostling, A., & Hosseini, P. (2008). Nutrient recycling affects autotroph and ecosystem stoichiometry. The American Naturalist, 171, 511-523. https://doi.org/10.1086/528967
Barantal, S., Schimann, H., Fromin, N., & Hättenschwiler, S. (2014). C, N and P fertilization in an Amazonian rainforest supports stoichiometric dissimilarity as a driver of litter diversity effects on decomposition. Proceedings of the Royal Society B: Biological Sciences, 281, 20141682. https://doi.org/10.1098/rspb.2014.1682
Bartrons, M., Sardans, J., Hoekman, D., & Penuelas, J. (2018). Trophic transfer from aquatic to terrestrial ecosystems: A test of the biogeochemical niche hypothesis. Ecosphere, 9, e02338. https://doi.org/10.1002/ecs2.2338
Bishop, J. G., O'Hara, N. B., Titus, J. H., Apple, J. L., Gill, R. A., & Wynn, L. (2010). N-P co-limitation of primary production and response of arthropods to N and P in early primary succession on Mount St- Helens volcano. PLoS ONE, 5, e13598. https://doi.org/10.1371/journal.pone.0013598
Bizsel, N., & Uslu, O. (2000). Phosphate, nitrogen and iron enrichment in the polluted Izmir Bay, Aegean Sea. Marine Environmental Research, 49, 101-122. https://doi.org/10.1016/s0141-1136(99)00051-3
Blanes, M. C., Viñegla, B., Merino, J., & Carreira, J. A. (2013). Nutritional status of Abies pinsapo forest along a nitrogen deposition gradient: Do C/N/P stoichiometric shifts modify photosynthetic nutrient use efficiency? Oecologia, 171, 797-808. https://doi.org/10.1007/s00442-012-2454-1
Blaser, W. J., Shanungu, G. K., Edwards, P. J., & Venterink, H. O. (2014). Woody encroachment reduces nutrient limitation and promotes soil carbon sequestration. Ecology and Evolution, 4, 1423-1438. https://doi.org/10.1002/ece3.1024
Bondre, N. (2011). Phosphorus: How much is enough? Global Change, 76. Retreived from http://www.igbp.net/news/features/features/phosphorushowmuchisenough.5.1b8ae20512db692f2a680002359.html
Bouwman, A. F., Beusen, A. H. W., Lassaletta, L., van Apeldoorn, D. F., van Grisven, H. J. M., Zhang, J., & van Ittersum, M. K. (2013). Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Scientific Reports, 7, 40366. https://doi.org/10.1038/srep40366
Bui, E. N., & Henderson, B. L. (2013). C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant and Soil, 373, 553-568. https://doi.org/10.1007/s11104-013-1823-9
Burns, R. C., & Hardy, R. W. F. (1975). Nitrogen fixation in bacteria and higher plants. New York, NY: Springer.
Busch, V., Klaus, V. H., Penone, C., Schäfer, D., Boch, S., Prati, D., … Kleinebecker, T. (2018). Nutrient stoichiometry and land use rather than species richness determine plant functional diversity. Ecology and Evolution, 8, 601-616. https://doi.org/10.1002/ece3.3609
Canfield, D. E., Glazer, A. N., & Falkowski, P. G. (2010). The evolution and future of earth's nitrogen cycle. Science, 330, 192-196. https://doi.org/10.1126/science.1186120
Capriulo, G. M., Smith, G., Troy, R., Wikfors, G. H., Pellet, J., & Yarish, C. (2002). The planktonic food web structure of a temperate zone estuary, and its alteration due to eutrophication. Hydrobiologia, 475, 263-333. https://doi.org/10.1007/978-94-017-2464-7_23
Carnicer, J., Sardans, J., Stefanescu, C., Ubach, A., Bartrons, M., Asensio, D., & Penuelas, J. (2015). Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances. Journal of Plant Physiology, 172, 82-91. https://doi.org/10.1016/j.jplph.2014.07.022
Carrillo, P., Villar-Argaiz, M., & Medina-Sánchez, J. M. (2001). Relationship between N:P ratio and growth rate during the life cycle of calanoid copepods: An in situ measurement. Journal of Planktonic Research, 23, 537-547. https://doi.org/10.1093/plankt/23.5.537
Cernusak, L. A., Winter, K., & Turner, B. L. (2010). Leaf nitrogen to phosphorus ratios of tropical trees: Experimental assessment of physiological and environmental controls. New Phytologist, 185, 770-779. https://doi.org/10.1111/j.1469-8137.2009.03106.x
Chai, C., Yu, Z. M., Song, X. X., & Cao, X. H. (2006). The status and characteristics of eutrophication in the Yangtze River (Changjiang) estuary and the adjacent East China Sea, China. Hydrobiologia, 563, 313-328. https://doi.org/10.1007/s10750-006-0021-7
Chen, B. H., Ji, W. D., Zhou, K. W., He, Q., & Fu, T. T. (2014). Nutrient and eutrophication characteristics of the Dongshan Bay, South China. Chinese Journal of Oceanology and Limnology, 32, 886-898. https://doi.org/10.1007/s00343-014-3214-3
Chen, L., Li, P., & Yang, Y. (2016). Dynamic patterns of nitrogen: Phosphorus ratios in forest soils of China under changing environment. Journal of Geophysical Research: Biogeosciences, 121, 2410-2421. https://doi.org/10.1002/2016JG003352
Chen, M. M., Yin, H. B., O'Connor, P., Wang, Y. S., & Zhu, Y. G. (2010). C:N:P stoichiometry and specific growth rate of clover colonized by arbuscular mycorrhizal fungi. Plant and Soil, 326, 21-29. https://doi.org/10.1007/s11104-009-9982-4
Chintala, R., Schumacher, T. E., McDonald, L. M., Clay, D. E., Malo, D. D., Papiernik, S. K., … Julson, J. L. (2014). Phosphorus sorption and availability from biochars and soil/biochar mixtures. Clean Soil and Air, 42, 626-634. https://doi.org/10.1002/clen.201300089
Cooke, A. (2017). Dietary food-additive phosphate and human health outcomes. Comprehensive Reviews in Food Science and Food Safety, 16, 906-1021. https://doi.org/10.1111/1541-4337.12275
Cordell, D., Jackson, M., & White, S. (2013). Phosphorus flows through the Australian food system: Identifying intervention points as a roadmap to phosphorus security. Environmental Science & Policy, 29, 87-102. https://doi.org/10.1016/j.envsci.2013.01.008
Cordell, D., Rosemarin, A., Schröder, J. J., & Smit, A. L. (2011). Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere, 84, 747-758. https://doi.org/10.1016/j.chemosphere.2011.02.032
Cordell, D., Schmid Neset, T. S., & Prior, T. (2012). The phosphorus mass balance: Identifying “hotspots” in the food system as a roadmap to phosphorus security. Current Opinion in Biotechnology, 23, 839-845. https://doi.org/10.1016/j.copbio.2012.03.010
Cordell, D., & White, S. (2011). Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability, 3, 2017-2049. https://doi.org/10.3390/su3102027
Cordell, D., & White, S. (2015). Tracking phosphorus security: Indicators of phosphorus vulnerability in the global food system. Food Security, 7, 337-350. https://doi.org/10.1007/s12571-015-0442-0
Crowley, K. F., McNeil, B. E., Lovett, G. M., Canham, C. D., Driscoll, C. T., Rustad, L., … Weathers, K. C. (2012). Do nitrogen limitation patterns shift from nitrogen towards phosphorus with increasing nitrogen deposition across the Northeastern United States? Ecosystems, 15, 940-957. https://doi.org/10.1007/s10021-012-9550-2
Curtis, B. C. (2019). Wheat in the world. Retrieved from http://www.fao.org/3/y4011e/y4011e04.htm#TopOfPage
Da Ros, L. M., Soolanayakanahally, R. Y., Guy, R. D., & Mansfield, S. D. (2018). Phosphorus storage and resorption in riparian tree species: Environmental applications of poplar and willow. Environmental and Experimental Botany, 149, 1-8. https://doi.org/10.1016/j.envexpbot.2018.01.016
Daehler, C. C. (2003). Performance comparisons of co-occurring native and alien invasive plants: Implications for conservation and restoration. Annual Review of Ecology, Evolution, and Systematics, 34, 183-211. https://doi.org/10.1146/annurev.ecolsys.34.011802.132403
Daniel, C., & Triboi, E. (2000). Effects of temperature and nitrogen nutrition on the grain composition of winter wheat: Effects on gliadin content and composition. Journal of Cereal Science, 32, 45-56. https://doi.org/10.1006/jcrs.2000.0313
Delgadillo-Vargas, O., Garcia-Ruiz, R., & Forero-Álvarez, J. (2016). Fertilising techniques and nutrient balances in the agriculture industrialization transition: The case of sugarcane in the Cauca river valley (Colombia), 1943-2010. Agriculture, Ecosystems and Environment, 218, 150-162. https://doi.org/10.1016/j.agee.2015.11.003
Delgado-Baquerizo, M., Maestre, F. T., Gallardol, A., Bowker, M. A., Wallenstein, M. D., Quero, J. L., … Zaady, E. (2013). Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 502, 672-676. https://doi.org/10.1038/nature12670
Delgado-Baquerizo, M., Reich, P., García-Palacios, P., & Milla, R. (2016). Biogeographic bases for a shift in crop C:N:P stoichiometris during domestication. Ecology Letters, 19, 564-575. https://doi.org/10.1111/ele.12593
Delgado-Baquerizo, M., Reich, P. B., Khachane, A. N., Campbell, C. D., Thomas, N., Freitag, T. E., … Singh, B. K. (2017). It is elemental: Soil nutrient stoichiometry drives bacterial diversity. Environmental Microbiology, 19, 1176-1188. https://doi.org/10.1111/1462-2920.13642
Delwiche, C. C. (1970). The nitrogen cycle. Scientific American, 223, 137-146. https://doi.org/10.1038/scientificamerican0970-136
DeMalach, N. (2018). Towards a mechanistic understanding of the effects of nitrogen and phosphorus additions on grassland diversity. Perspectives in Plant Ecology, Evolution and Systematics, 32, 65-72. https://doi.org/10.1016/j.ppees.2018.04.003
Deng, Q., Hui, D., Luo, Y., Elser, J., Wang, Y. P., Loladze, I., … Dennis, S. (2015). Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2. Ecology, 96, 3354-3362. https://doi.org/10.1890/15-0217.1.sm
Dhingra, R., Gona, P., Benjamin, E. J., Wang, T. J., Aragam, J., D'Agostino, R. B., … Vasan, R. S. (2010). Relations of serum phosphorus levels to echocardiographic left ventricular mass and incidence of heart failure in the community. European Journal of Heart Failure, 12, 812-818. https://doi.org/10.1093/eurjhf/hfq106
Du, E., de Vries, W., Han, W., Liu, X., Yan, Z., & Jiang, Y. (2016). Imbalanced phosphorus and nitrogen deposition in China's forests. Atmospheric Chemistry and Physics, 16, 8571-8579. https://doi.org/10.5194/acp-16-8571-2016
Dubois, B., Bertin, P., Hautier, L., Muhovski, Y., Escarnot, E., & Mingeot, D. (2018). Genetic and environmental factors affecting the expression of a-gliadin canonical epitopes involved in celiac disease in a wide collection of spelt (Triticum aestivum ssp. Spelta) cultivars and landraces. BMC Plant Biology, 18, 262.
Duce, R. A., LaRoche, J., Altieri, K., Arrigo, K. R., Baker, A. R., Capone, D. G., … Zamora, L. (2008). Impacts of anthropogenic nitrogen on the open ocean. Science, 320, 893-897. https://doi.org/10.1126/science.1150369
Dudareva, D. M., Kvitkina, A. K., Yusupov, I. A., & Yevdokimov, I. V. (2018). Changes in C:N:P ratios in plant biomass, soil and soil microbial biomass due to the warming and dessication effect of flaring. Dokuchaev Soil Bulletin, 95, 71-89. https://doi.org/10.19047/0136-1694-2018-95-71-89
Dumas, M., Frossard, E., & Scholz, R. W. (2011). Modeling biogeochemical processes of phosphorus for global food supply. Chemosphere, 84, 798-805. https://doi.org/10.1016/j.chemosphere.2011.02.039
Dupas, R., Delmas, M., Dorioz, J. M., Garnier, J., Moatar, F., & Gascuel-Odoux, C. (2015). Assessing the impact of agricultural pressures on N and P loads and eutrophication risk. Ecological Indicators, 48, 396-407. https://doi.org/10.1016/j.ecolind.2014.08.007
Eldridge, D. J., Bowker, M. A., Maestre, F. T., Roger, E., Reynolds, J. F., & Whitford, W. G. (2011). Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecology Letters, 14, 709-722. https://doi.org/10.1111/j.1461-0248.2011.01630.x
Elser, J. J., Andersen, T., Baron, J. S., Bergstrom, A.-K., Jansson, M., Kyle, M., … Hessen, D. O. (2009). Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326, 835-837. https://doi.org/10.1126/Science.1176199
Elser, J. J., & Bennett, E. (2011). A broken biogeochemical cycle. Nature, 478, 29-31. https://doi.org/10.1038/478029a
Elser, J. J., Fagan, W. F., Denno, R. F., Dobberfuhl, D. R., Folarin, A., Huberty, A., … Sterner, R. W. (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580.
Elser, J. J., Fagan, W. F., Kerkhoff, A. J., Swenson, N. G., & Enquist, B. J. (2010). Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytologist, 186, 593-609. https://doi.org/10.1111/j.1469-8137.2010.03214.x
Elser, J. J., Kyle, M. M., Smith, M. S., & Nagy, J. D. (2007a). Biological stoichiometry in human cancer. PLoS ONE, 2, e1028. https://doi.org/10.1371/journal.pone.0001028
Elser, J. J., Kyle, M. M., Smith, M. S., & Nagy, J. D. (2007b). Biological stoichiometry of tumors: A test of the growth rate hypothesis using paired biopsy samples of human tumors. Integrative and Comparative Biology, 46, E39-E39.
Elser, J. J., Kyle, M., Steger, L., Nydick, K. R., & Baron, J. S. (2009). Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition. Ecology, 90, 3062-3073. https://doi.org/10.1890/08-1742.1
Elser, J. J., Peace, A. L., Kyle, M., Wojewodzic, M., McCrackin, M. L., Andersen, T., & Hessen, D. O. (2010). Atmospheric nitrogen deposition is associated with elevated phosphorus limitation of lake zooplankton. Ecology Letters, 13, 1256-1261. https://doi.org/10.1111/j.1461-0248.2010.01519.x
Eo, J., & Park, K. C. (2016). Long-term effects of imbalanced fertilization on the composition and diversity of soil bacterial community. Agriculture Ecosystems & Environment, 231, 176-182. https://doi.org/10.1016/j.agee.2016.06.039
Eriksson, E. (1959). Atmospheric chemistry. Svensk Botanisk Tidskrift, 71, 15-32.
Fanin, N., Fromin, N., Biatois, B., & Hättenschwiler, S. (2013). An experimental test of the hypothesis of non-homeostatic consumer stoichiometry in a plant litter-microbe system. Ecology Letters, 16, 764-772. https://doi.org/10.1111/ele.12108
FAO. (2008). Current world fertilizer trends and outlook to 2011/12. Rome, Italy: Food and Agriculture Organization of the United Nations.
FAO. (2015). Current world fertilizer trends and outlook to 2018. Rome, Italy: Food and Agriculture Organization of the United Nations.
FAO. (2017). Current world fertilizer trends and outlook to 2020. Rome, Italy: Food and Agriculture Organization of the United Nations.
Feng, D. F., & Bao, W. K. (2018). Shrub encroachment alters topsoil C:N:P stoichiometric ratios in a high-altitude forest cutover. Iforest - Biogeosciences and Forestry, 11, 594-598. https://doi.org/10.3832/ifor2803-011
Fenn, M. E., Poth, M. A., Aber, J. D., Baron, J. S., Bormann, B. T., Johnson, D. W., … Stottlemyer, R. (1998). Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies. Ecological Applications, 8, 706-733. https://doi.org/10.1890/1051-0761(1998)008[0706:NEINAE]2.0.CO;2
Fernandes, A. M., Soratto, R. P., de Souza, E. D. C., & Job, A. L. G. (2017). Nutrient uptake and removal by potato cultivars as affected by phosphate fertilization of Soils with different levels of phosphorus availability. Revista Brasileira de CIencia do Solo, 41, e0160288. https://doi.org/10.1590/18069657rbcs20160288
Fernández-Martínez, M., Sardans, J., Chevalier, F., Ciais, P., Obersteiner, M., Vicca, S., … Penuelas, J. (2019). Global trends in carbon sinks and their relationships with CO2 and temperature. Nature Climate Change, 9, 73-79. https://doi.org/10.1038/s41558-018-0367-7
Fernández-Martínez, M., Vicca, S., Janssens, I. A., Sardans, J., Luyssaert, S., Campioli, M., … Penuelas, J. (2014). Nutrient availability at the key regulator of global forest carbón balance. Nature Climate Change, 4, 471-476. https://doi.org/10.1038/NCLIMATE2177
Ferretti, M., Marchetto, A., Arisci, S., Bussotti, F., Calderisi, M., Carnicelli, S., … Pompei, E. (2014). On the tracks of nitrogen deposition effects on temperature forests at their southern European range-An observational study from Italy. Global Change Biology, 20, 3423-3438. https://doi.org/10.1111/gcb.12552
Fields, S. (2004). Global nitrogen cycling out of control. Environmental Health Perspectives, 112, A557-A563. https://doi.org/10.1289/ehp.112-a556
Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., … Voss, M. (2013). The global nitrogen cycle in the twenty first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621), 20130164. https://doi.org/10.1098/rstb.2013.0164
Franzaring, J., Holz, I., Zipperle, J., & Fangmeier, A. (2010). Twenty years of biological monitoring of element concentrations in permanent forest and grassland plots in Baden-Wurttemberg (SW Germany). Environmental Science and Pollution Research, 17, 4-12. https://doi.org/10.1007/s11356-009-0181-x
Frost, P. C., Kinsman, L. E., Johnston, C. A., & Larson, J. H. (2009). Watershed discharge modulates relationships between landscape components and nutrient ratios in stream seston. Ecology, 90, 1631-1640. https://doi.org/10.1890/08-1534.1
Galloway, J. N. (1998). The global nitrogen cycle: Changes and consequences. Environmental Pollution, 102, 15-24. https://doi.org/10.1016/S0269-7491(98)80010-9
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., … Vörösmarty, C. J. (2004). Nitrogen cycles: Past, present, and future. Biogeochemistry, 70, 153-226. https://doi.org/10.1007/s10533-004-0370-0
Galloway, J., Schelinger, W., Levy, H., Michaels, A., & Schnoor, J. L. (1995). Nitrogen fixation: Anthropogenic enhancement-environmental response. Global Biogeochemical Cycles, 9, 235-252. https://doi.org/10.1029/95gb00158
Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., … Sutton, M. A. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889-892. https://doi.org/10.1126/science.1136674
Gargallo-Garriga, A., Sardans, J., Perez-Trujillo, M., Ovarec, M., Urban, O., Jentsch, A., … Penuelas, J. (2015). Warming differentially influences the effects to drought on stoichiometry and metabolomics in shoots and roots. New Phytiologist, 207, 591-603. https://doi.org/10.1111/nph.13377
Gargallo-Garriga, A., Sardans, J., Pérez-Trujillo, M., Rivas-Ubach, A., Ovarec, M., Veceroka, K., … Penuelas, J. (2014). Opposite metabolic responses of shoots and roots to drought. Scientific Reports, 4, 6829. https://doi.org/10.1038/srep.06829
Gerson, J. R., Driscoll, C. T., & Roy, K. M. (2016). Patterns of nutrient dynamics in Adirondack lakes recovering from acid deposition. Ecological Applications, 26, 1758-1770. https://doi.org/10.1890/15-1361
Gil-Humanes, J., Pistón, F., Altamirano, R., Real, A., Comino, I., Sousa, C., … Barro, F. (2014). Reduced-Gliadin wheat bread: An alternative to the gluten-free diet for consumers suffering gluten-related pathologies. PLoS ONE, 9, e90898.https://doi.org/10.1371/journal.pone.0090898
Godwin, C. M., & Cotner, J. B. (2018). What intrinsic and extrinsic factors explain the stoichiometric diversity of aquatic heterotrophic bacteria? The ISME Journal, 12, 598-609. https://doi.org/10.1038/ismej.2017.195
Goll, D. S., Brovkin, V., Parida, B. R., Reick, C. H., Kattge, J., Reich, P. B., … Niinemets, Ü. (2012). Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences, 9, 3547-3569. https://doi.org/10.5194/bg-9-3547-2012
Goll, D. S., Vuichard, N., Maignan, F., Jornet-Puig, A., Sardans, J., Violette, A., … Ciais, P. (2017). A presentation of phosphorus cycle for ORCHIDEE (revision 4520). Geosciences Model Development, 10, 3745-3770. https://doi.org/10.5194/gmd-10-3745-2017
Gomez, M. I., Magnitskiy, S., & Rodriguez, L. E. (2019). Nitrogen, phosphorus and potassium accumulation and partitioning by the potato group Andigenum in Colombia. Nutrient Cycling in Agroecosystems, 113, 349-363. https://doi.org/10.1007/s10705-019-09986-z
Gomez-Garrido, M., Martinez-Martinez, S., Cano, A. F., Buyukkilic-Yanardag, A., & Arocena, J. M. (2014). Soil fertility status and nutrients provided to spring barley (Hordeum distichon L.) by pig slurry. Chilean Journal of Agriculture Research, 74, 73-82. https://doi.org/10.4067/S0718-58392014000100012
González, A. L., Céréghino, R., Dézerald, O., Farjalla, V. F., Leroy, C., Richardson, B. A., … Srivastava, D. S. (2018). Ecological mechanisms and phylogeny shape invertebrate stoichiometry: A test using detritus-based communities across Central and South America. Functional Ecology, 32, 2448-2463. https://doi.org/10.1111/1365-2435.13197
González, A. L., Dézerald, O., Marquet, P. A., Romero, G. Q., & Srivastava, D. S. (2017). The multidimensional stoichiometric niche. Frontiers in Ecology and Evolution, 5, 1-17. https://doi.org/10.3389/fevo.2017.00110
Gonzalez, A. L., Kominoski, J. S., Danger, M., Ishida, S., Iwai, N., & Rubach, A. (2010). Can ecological stoichiometry help explain patterns of biological invasions? Oikos, 119, 779-790. https://doi.org/10.1111/j.1600-0706.2009.18549.x
Graham, W. F., & Duce, R. A. (1979). Atmospheric pathways of the phosphorus cycle. Geochimica et Cosmochimica Acta, 43, 1195-1208. https://doi.org/10.1016/0016-7037(79)90112-1
Grosse, J., Burson, A., Stomp, M., Huisman, J., & Boschker, H. T. S. (2017). From ecological stoichiometry to biochemical composition: Variation in N and P supply alters key biosynthetic rates in marine phytoplankton. Frontiers in Microbiology, 8, https://doi.org/10.3389/fmicb.2017.01299
Grübler, A. (2002). Trends in global emissions: Carbon, sulfur, and nitrogen. In I. Douglas & T. Munn (Eds.), Causes and consequences of global environmental changes. Encyclopedia of global environmental change (pp. 35-53). Chichester: John Wiley & Sons Ltd.
Gruber, N., & Galloway, J. N. (2008). An earth-system perspective of the global nitrogen cycle. Nature, 451, 293-296. https://doi.org/10.1038/nature06592
Gu, B., Chang, J., Min, Y., Ge, Y., Zhu, Q., Galloway, J. N., & Peng, C. (2013). The role of industrial nitrogen in the global nitrogen biogeochemical cycle. Scientific Reports, 3, 2579. https://doi.org/10.1038/srep02579
Guardia, G., Sanz-Cobena, A., Sanchez-Martín, L., Fuertes-Mendizábal, T., González-Murua, C., Álvarez, J. M., … Vallejo, A. (2018). Urea-based fertilization strategies to reduce yield-scaled N oxides and enhance bread-making quality in a rainfed Mediterranean wheat crop. Agriculture, Ecosystems and Environment, 265, 421-431. https://doi.org/10.106/j.agee.2018.033
Güsewell, S., Bailey, K. M., Roem, W. J., & Bedford, B. (2005). Nutrient limitation and botanical diversity in wetlands: Can fertilization raise species richness? Oikos, 109, 71-80. https://doi.org/10.1111/j.0030-1299.2005.13587.x
Güsewell, S., & Freeman, C. (2005). Nutrient limitation and enzyme activities during litter decomposition of nine wetland species in relation to litter N:P ratios. Functional Ecology, 16, 582-593. https://doi.org/10.1111/j.1365-2435.2005.01002.x
Güsewell, S., & Gessner, M. O. (2009). N : P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology, 23, 211-219. https://doi.org/10.1111/j.1365-2435.2008.01478.x
Güsewell, S., & Verhoeven, J. T. A. (2006). Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter. Plant and Soil, 287, 131-143. https://doi.org/10.1007/s11104-006-9050-2
Hall, S. R. (2009). Stoichiometrically explicit food webs: Feedbacks between resources supply, elemental constrains, and species diversity. Annual Reviews Ecology, Evolution and Systematics, 40, 503-528. https://doi.org/10.1146/annurev.ecolsys.39.110707.173518
Hanserud, O. S., Brod, E., Ogaard, A. F., Müller, D. B., & Brattebo, H. (2016). A multi-regional soil phosphorus balance for exploring secondary fertilizer potential: The case of Norway. Nutrient Cycling in Agroecosystems, 104, 307-320. https://doi.org/10.1007/s10705-015-9721-6
Harrison, P. J., Yin, K. D., Lee, J. H. W., Gan, J. P., & Liu, H. B. (2008). Physical-biological coupling in the Pearl River Estuary. Continental Shelf Research, 28, 1405-1415. https://doi.org/10.1016/j.csr.2007.02.011
Hättenschwiler, S., & Jørgensen, H. B. (2010). Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. Journal of Ecology, 98, 754-763. https://doi.org/10.1111/j.1365-2745.2010.01671.x
He, M., & Djistra, F. A. (2014). Drought effect on plant nitrogen and phosphorus: A meta-analysis. New Phytologist, 204, 924-931. https://doi.org/10.1111/nph.12952
He, M., Li, G. Z., Wei, M. X., & Tan, Q. Z. (2013). Relationship between the seasonality of seawater N:P ratio and the structure of plankton on the reefs of Weizhou Island, northern South China sea. Journal of Tropical Oceanography, 32, 64-72. https://doi.org/10.3969/j.issn.1009-5470.2013.04.010
Hentz, P., Correa, J. C., Fontanelli, R. S., Bebelatto, A., Nicoloso, R. D., & Semmelmann, C. E. N. (2016). Poultry litter and pig slurry applications in an integrated crop-livestock system. Revista Brasileira de Ciencia do Solo, 40, e0150072. https://doi.org/10.1590/18069657rbcs20150072
Herridge, D. F., Peoples, M. B., & Boddey, R. M. (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 311, 1-18. https://doi.org/10.1007/s11104-008-9668-3
Hessen, D. O. (2013). Inorganic nitrogen deposition and its impacts on N:P-ratios and lake productivity. Water, 5, 327-341. https://doi.org/10.3390/w5020327
Hessen, D. O., Andersen, T., Larsen, S., Skjelkvale, B. L., & de Wit, H. A. (2009). Nitrogen deposition, catchment productivity, and climate as determinants of lake stoichiometry. Limnology and Oceanography, 54, 2520-2528. https://doi.org/10.4319/lo.2009.54.6_part_2.2520
Hischenhuber, C., Crevel, R., Jarry, B., Maki, M., Moneret-vautrin, D. A., Romano, A., … Ward, R. (2006). Review article: Safe amounts of gluten for patients with wheat allergy or coeliac disease. Alimentary Pharmacology Therapeutics, 23, 559-575.
Hu, M., Penuelas, J., Sardans, J., Sun, Z., Wilson, B. J., Huang, J., … Tong, C. (2018). Stoichiometry patterns of plant organ N and P in coastal herbaceous wetlands along the East China sea: Implications for biogeochemical niche. Plant and Soil, 431, 273-288. https://doi.org/10.1007/s11104-018-3759-6
Huang, J., Ji, M., Xie, Y., Wang, S., He, Y., & Ran, J. (2016). Global semi-arid climate change over last 60 years. Climate Dynamics, 46, 1131-1150. https://doi.org/10.1007/s00382-015-2636-8
Huang, J., Li, Y., Fu, C., Chen, F., Fu, Q., Dai, A., … Wang, G. (2017). Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 55, 719-778. https://doi.org/10.1002/2016rg000550
Huang, W., Zhou, G., Liu, J., Duan, H., Liu, X., Fang, X., & Zhang, D. (2014). Shifts in soil phosphorus fractions under elevated CO2 and N addition in model forest ecosystems in subtropical China. Plant Ecology, 215, 1373-1384. https://doi.org/10.1007/s11258-014-0394-z
Huang, Z., Liu, B., Davis, M., Sardans, J., Penuelas, J., & Billings, S. (2016). Long-term nitrogen deposition linked to reduced wáter use efficiency in forests with low phosphorus availability. New Phytologist, 210, 431-442. https://doi.org/10.1111/nph.13785
Hukari, S., Hermann, L., & Nättorp, A. (2016). From wastewater to fertilisers-Technical overview and critical review of European legislation governing phosphorus recycling. Science of the Total Environment, 542, 1127-1135. https://doi.org/10.1016/j.sciottenv.2015.09.064
Humer, E., Schwarz, C., & Schedle, K. (2015). Phytate in pig and poultry nutrition. Journal of Animal Physiology and Animal Nutrition, 99, 605-625. https://doi.org/10.1111/jpn.12258
Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y., & Field, C. B. (2003). Nitrogen and climate change. Science, 302, 1512-1513. https://doi.org/10.1038/ncomms3934
Ibañez, C., & Penuelas, J. (2019). Changing nutrients, changing rivers. Phosphorus removal from freshwater systems has wide-ranging ecological consequences. Science, 365(6454), 637-638. https://doi.org/10.1126/science.aay2723
Isles, P. D. F., Creed, I. F., & Bergstrom, A. K. (2018). Recent synchronous declines in DIN:TP in Swedish lakes. Global Biogeochemical Cycles, 32, 208-225. https://doi.org/10.1002/2017GB005722
Jedelhauser, M., & Binder, C. R. (2018). The spatial impact of socio-technical transitions-The case of phosphorus recycling as a pilot of the circular economy. Journal of Cleaner Production, 197, 856-869. https://doi.org/10.1016/j.jclepro.2018.06.241
Jedelhauser, M., Mehr, J., & Binder, C. R. (2018). Transition of the Swiss phosphorus system towards a circular economy-Part 2: Socio-technical scenarios. Sustainability, 10, 1980. https://doi.org/10.3390/su10061980
Jiao, F., Shi, X. R., Han, F. P., & Yuan, Z. Y. (2016). Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grassland. Scientific Reports, 6, 19601. https://doi.org/10.1038/srep19601
Jin, J., Tang, C., & Sale, P. (2015). The impact of elevated carbon dioxide on the phosphorus nutrition of plants: A review. Annals of Botany, 116, 987-999. https://doi.org/10.1093/aob/mcv088
Jirousek, M., Hajek, M., & Bragazza, L. (2011). Nutrient stoichiometry in Sphagnum along a nitrogen gradient deposition gradient in highly polluted region on Central-Europe. Environmental Pollution, 159, 585-590. https://doi.org/10.1016/j.envpol.2010.10.004
Jochum, M., Barnes, A. D., Weigelt, P., Ott, D., Rembold, K., Farajallah, A., & Brose, U. (2017). Resource stoichiometry and availability modulate species richness and biomass of tropical litter macro-invertebrates. Journal of Animal Ecology, 86, 1114-1123. https://doi.org/10.1111/1365-2656.12695
Johnson, M. W., Heck, K. L. Jr., & Fourqurean, J. W. (2006). Nutrient content of seagrasses and epiphytes in the northern Gulf of Mexico: Evidence of phosphorus and nitrogen limitation. Aquatic Botany, 85, 103-111.
Kahsay, W. S. (2019). Effects of nitrogen and phosphorus on potatoes production in Ethiopia: A review. Cogent Food & Agriculture, 5, 157985. https://doi.org/10.1080/23311932.2019.1572985
Kara, E. L., Heimerl, C., Killpack, T., van der Bogert, M. C., Yoshida, H., & Carpenter, S. R. (2012). Assessing a decade of phosphorus management in the lake Mendota, Wisconsin watershed and scenarios for enhanced phosphorus management. Aquatic Science, 74, 241-253. https://doi.org/10.1007/s00027-011-0215-6
Kasprzyk, M., & Gajewska, M. (2019). Phosphorus removal by application of natural and semi-natural materials for possible recovery according to assumptions of circular economy and closed circuit of P. Science of the Total Environment, 650, 249-256. https://doi.org/10.1016/j.scitotenv.2018.09.034
Kindred, D. R., Verhoeven, T. M. O., Weightman, R. M., Swanston, J. S., Agu, R. C., Brosnan, J. M., & Sylvester-Bradley, R. (2008). Effects of variety and fertiliser nitrogen on alcohol yield, grain yield, starch and protein content, and protein composition of winter wheat. Journal of Cereal Science, 48, 46-57. https://doi.org/10.1016/j.jcs.2007.07.010
King, A. L., Jenkins, B. D., Wallace, J. R., Liu, Y., Wikfors, G. H., Milke, L. M., & Meseck, S. L. (2015). Effects of CO2 on growth rate, C:N:P, and fatty acid composition of seven marine phytoplankton species. Marine Ecology Progress Series, 537, 59-69. https://doi.org/10.3354/meps11458
Klikocka, H., Cybulska, M., Barczak, B., Narolski, B., Szostak, B., Kobiałka, A., … Wójcik, E. (2016). The effect of sulphur and nitrogen fertilization on grain yield and technological quality of spring wheat. Plant Soil and Environment, 5, 230-236. https://doi.org/10.17221/18/2016-PSE
Knapp, A. K., Briggs, J. M., Collins, S. L., Archer, S. R., Bret-harte, M. S., Ewers, B. E., … Cleary, M. B. (2008). Shrub encroachment in North American grasslands: Shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14, 615-623. https://doi.org/10.1111/j.1365-2486.2007.01512.x
Kruk, M., & Podbielska, K. (2018). Potential changes of elemental stoichiometry and vegetation production in an ombrobic peatland in the condition of moderate nitrogen deposition. Aquatic Botany, 147, 24-33. https://doi.org/10.1016/j.aquabot.2018.03.004
Laliberté, E., Grace, J. B., Huston, M. A., Lambers, H., Teste, F. P., Turner, B. L., & Wardle, D. A. (2013). How does pedogenesis drive plant diversity? Trends in Ecology and Evolution, 28, 331-340. https://doi.org/10.1016/j.tree.2013.02.008
Larsen, M. J., Wilhelm, S. W., & Lennon, J. T. (2019). Nutrient stoichiometry shapes microbial coevolution. Ecology Letters, 22, 1009-1018. https://doi.org/10.1111/ele.13252
Lee, Z. M. P., Poret-Peterson, A. T., Siefert, J. L., Kaul, D., Moustafa, A., Allen, A. E., … Elser, J. J. (2017). Nutrient stoichiometry shapes microbial community structure in an evaporitic shallow pond. Frontiers in Microbiology, 8, 949. https://doi.org/10.3389/fmicrob.2017.00949
Lee, Z. M., Steger, L., Corman, J. R., Neveu, M., Poret-Peterson, A. T., Souza, V., & Elser, J. J. (2015). Response of a stoichiometrically imbalanced ecosystem to manipulation of nutrient supplies and ratios. PLoS ONE, 10, e0123949. https://doi.org/10.1371/Journal.pone.0123949
Leflaive, J., Danger, M., Lacroix, G., Lyautey, E., Oumarou, C., & Ten-Hage, L. (2008). Nutrient effects on the genetic and functional diversity of aquatic bacterial communities. FEMS Microbiology Ecology, 66, 379-390. https://doi.org/10.1111/j.1574-6941.2008.00593.x
Lepori, F., & Keck, F. (2012). Effects of atmospheric nitrogen deposition on remote freshwater ecosystems. Ambio, 41, 235-244. https://doi.org/10.1007/s13280-012-0250-0
Li, G., Huang, G., Li, H., van Ittersum, M. K., Leffelaar, P. A., & Zhang, F. (2016). Identifying potential strategies in the key sectors of China's food chain to implement sustainable phosphorus management: A review. Nutrient Cycling in Agroecosystems, 104, 341-359. https://doi.org/10.1007/s10705-015-9736-z
Li, H., Liu, J., Li, G., Shen, J., Bergström, L., & Zhang, F. (2015). Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses. Ambio, 44, S274-S285. https://doi.org/10.1007/s13280-015-0633-0
Li, Y., Li, D. J., Tang, J. L., Wang, Y. M., Liu, Z. G., & He, S. Q. (2010). Long-term changes in the Changjiang Estuary plankton community related to anthropogenic eutrophication. Aquatic Ecosystem Health & Management, 13, 66-72. https://doi.org/10.1080/14634980903579942
Liess, A., Drakare, S., & Kahlert, M. (2009). Atmospheric nitrogen-deposition may intensify phosphorus limitation of shallow epilithic periphyton in unproductive lakes. Freshwater Biology, 54, 1759-1773. https://doi.org/10.1111/j.1365-2427.2009.02222.x
Lin, L., Gettelman, A., Fu, Q., & Xu, Y. (2018). Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols. Climate Change, 146, 407-422. https://doi.org/10.1007/s10584-016-1615-3
Lipizer, M., Cossarini, G., Falconi, C., Solidoro, C., & Fonda Umani, S. (2011). Impact of different forcing factor son N:P balance in a semi-enclosed bay: The Gulf of Trieste (North Adriatic Sea). Continental Shelf Research, 31, 1651-1662. https://doi.org/10.1016/j.csr.2011.06.004
Litke, L., Gaile, Z., & Ruza, A. (2018). Effect of nitrogen fertilization on winter wheat yield and yield quality. Agronomy Research, 16, 500-509. https://doi.org/10.15159/ar.18.064
Liu, J., Appiah-Sefah, G., & Apreku, T. O. (2018). Effects of elevated atmospheric CO2 and nitrogen fertilization on nitrogen cycling in experimental riparian wetlands. Water Science and Engineering, 11, 39-45. https://doi.org/10.1016/j.wse.2017.05.005
Liu, Q., Wang, J., Bai, Z., Ma, L., & Oenema, O. (2017). Global animal production and nitrogen and phosphorus flows. Soil Research, 55, 451-462. https://doi.org/10.1071/SR17031
Liu, X., Sheng, H., Jiang, S., Yuan, Z., Zhang, C., & Elser, J. J. (2016). Intensification of phosphorus cycling in China since 1960s. Proceedings of the National Academy of Sciences of the United States of America, 113, 2609-2614. https://doi.org/10.1073/pnas.1519554113
Liu, Z. F., Fu, B. J., Zheng, X. X., & Liu, G. H. (2010). Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: A regional scale study. Soil Biology and Biochemistry, 42, 445-450. https://doi.org/10.1016/j.soilbio.2009.11.027
Loladze, I., & Elser, J. J. (2011). The origins of the Redfield nitrogen-to-phosphorus ratio are in homeostatic protein-to-rRNA ratio. Ecology Letters, 14, 244-250. https://doi.org/10.1111/j.1461-0248.2010.01577.x
Lu, C., & Tian, H. (2017). Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth System Science Data, 9, 181-192. https://doi.org/10.5194/essd-9-181-2017
Lukowiak, R., Grzebisz, W., & Sassenrath, G. F. (2016). New insights into phosphorus management in agriculture-A crop rotation approach. Science of the Total Environment, 542, 1062-1077. https://doi.org/10.1016/j.scitotenv.2015.09.009
Lun, F., Liu, J., Ciais, P., Nesme, T., Chang, J., Wang, R., … Obersteiner, M. (2018). Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth System Science Data, 10, 1-18. https://doi.org/10.5194/essd-10-1-2018
Luo, W., Xu, C., Ma, W., Yue, X., Liang, X., Zuo, X., … Han, X. (2018). Effects of extreme drought on plant nutrient uptake and resorption in rhizomatous vs bunchgrass-dominated grasslands. Oecologia, 188, 633-643. https://doi.org/10.1007/s00442-018-4232-1
Luo, W., Zuo, X., Ma, W., Xu, C., Yu, Q., Knapp, A. K., … Han, X. (2018). Differential responses of canopy nutrients to experimental drought along natural aridity gradient. Ecology, 99, 2230-2239. https://doi.org/10.1002/ecy.2444
MacDonald, G. K., Bennett, E. M., Potter, P. A., & Ramankutty, N. (2011). Agronomic phosphorus imbalances across the world's croplands. Proceedings of the National Academy of Sciences of the United States of America, 108, 3086-3091. https://doi.org/10.1073/pnas.1010808108
Mackenzie, F. T., Ver, L. M., & Lerman, A. (2002). Century scale nitrogen and phosphorus controls of the carbón cycle. Chemical Geology, 190, 13-32. https://doi.org/10.1016/s0009-2541(02)00108-0
Mahowald, N., Jickells, T. D., Baker, A. R., Artaxo, P., Benitez-Nelson, C. R., Bergametti, G., … Tsukuda, S. (2008). Global distribution of atmospheric phosphorus sources, concentration and deposition rates, and anthropogenic impacts. Global Biogeochemical Cycles, 22, GB4026. https://doi.org/10.1029/2008gb003240
Matsubae, K., Kajiyama, J., Hiraki, T., & Nagasaka, T. (2011). Virtual phosphorus ore requirements of Japanese economy. Chemosphere, 84, 767-772. https://doi.org/10.1016/j.chemosphere.2011.04.077
Matzek, V. (2011). Superior performance and nutrient-use efficiency of invasive plants over non-invasive congeners in a resource-limited environment. Biological Invasions, 13, 3005-3014. https://doi.org/10.1007/s10530-011-9985-y
McElroy, W. B., Elkins, J. W., & Yung, Y. L. (1976). Sources and sinks for atmospheric N2O. Review of Geophysical Space and Physics, 14, 143-150. https://doi.org/10.1029/rg014i002p00143
Melia, P. M., Cundy, A. B., Sohi, S. P., Hooda, P. S., & Busquets, R. (2017). Trends in the recovery of phosphorus in bioavailable forms from wastewater. Chemosphere, 186, 381-395. https://doi.org/10.1016/j.chemosphere.2017.07.089
Metson, G. S., Iwaniec, D. M., Baker, L. A., Bennett, E. M., Childers, D. L., Cordell, D., … White, S. (2015). Urban phosphorus sustainability: Systemically incorporating social, ecological, and technological factors into phosphorus flow analysis. Environmental Science & Policy, 47, 1-11. https://doi.org/10.1016/j.envsci.2014.10.005
Metson, G. S., MacDonald, G. K., Haberman, D., Nesme, T., & Bennett, E. M. (2016). Feeding the Corn Belt: Opportunities for phosphorus recycling in U.S. agriculture. Science of the Total Environment, 542, 1117-1126. https://doi.org/10.1016/j.scitotenv.2015.08.047
Mew, M. C. (2016). Phosphate rock costs, prices and resources interaction. Science of the Total Environment, 542, 1008-1012. https://doi.org/10.1016/j.scitotenv.2015.08.045
Mihelcic, J. R., Fry, L. M., & Shaw, R. (2011). Global potential of phosphorus recovery from human urine and feces. Chemosphere, 84, 8323-8839. https://doi.org/10.1016/j.chemosphere.2011.02.046
Miyazako, T., Kamiya, H., Godo, T., Koyama, Y., Nakashima, Y., Sato, S., … Yamamuro, M. (2015). Long-term trends in nitrogen and phosphorus concentrations in the Hii River as influenced by atmospheric deposition from East Asia. Limnology and Oceanography, 60, 629-640. https://doi.org/10.1002/lno.10051
Mogollón, J. M., Beusen, A. H. M., van Grinsven, H. J. M., Westhoek, H., & Bouwman, A. F. (2018). Future Agricultural phosphorus demand according to the shared socioeconomic pathways. Global Environmental Change, 50, 149-163. https://doi.org/10.1016/j.gloenvcha.2018.03.007
Mogollón, J. M., Lassaletta, L., Beusen, A. H. W., van Grinsven, H. J. M., Westhoek, H., & Bouwman, A. F. (2018). Assessing future reactive nitrogen inputs into global croplands base on the shared socioeconomic pathways. Environmental Research Letters, 13, 044008. https://doi.org/10.1088/1748-9326/aab212
Moorthi, S. D., Ptacnik, R., Sanders, R. W., Fischer, R., Busch, M., & Hillebrand, H. (2017). The functional role of planktonic mixotrophs in altering seston stoichiometry. Aquatic Microbial Ecology, 79, 235-245. https://doi.org/10.3354/ame01832
Morrell, K., & Melby, M. K. (2017). Celiac disease: The evolutionary paradox. International Journal of Celiac Disease, 5, 86-94. https://doi.org/10.12691/ijcd-3-3-9
Neset, T. S. S., & Cordell, D. (2011). Global phosphorus scarcity: Identifying synergies for a sustainable future. Journal of Science in Food and Agriculture, 92, 2-6. https://doi.org/10.1002/jsfa.4650
Nesme, T., Senthilkumar, K., Mollier, A., & Pellerin, S. (2015). Effects of crop and livestock segregation on phosphorus resource use: A systematic, regional analysis. European Journal of Agronomy, 71, 88-95. https://doi.org/10.1016/j.eja.2015.08.001
Obersteiner, M., Penuelas, J., Ciais, P., van der Velde, M., & Janssens, I. A. (2013). The phosphorus trilemma. Nature Geoscience, 6, 897-898. https://doi.org/10.1038/ngeo1990
Oster, M., Reyer, H., Ball, E., Fornara, D., McKillen, J., Sørensen, K., … Wimmers, K. (2018). Bridging gaps in the agricultural phosphorus cycle from an animal husbandry perspective-The case of pigs and poultry. Sustainability, 10, 1825. https://doi.org/10.3390/su10061825
Ostertag, R. (2010). Foliar nitrogen and phosphorus accumulation responses after fertilization: An example from nutrient-limited Hawaiian forest. Plant and Soil, 334, 85-98. https://doi.org/10.1007/s11104-010-0281-x
Pekin, B. K., Boer, M. M., Wittkuhn, R. S., Macfarlane, C., & Grieson, P. F. (2012). Plant diversity is linked to nutrient limitation of dominant species in a world biodiversity hotspot. Journal of Vegetation Science, 23, 745-754. https://doi.org/10.1111/j.1654-1103.2012.01386.x
Peng, Y., Peng, Z., Zeng, X., & Houx, J. H. III (2019). Effects of nitrogen-phosphorus imbalance on plant biomass production: A global perspective. Plant and Soil, 436, 245-252. https://doi.org/10.1007/s11104-018-03927-5
Penuelas, J., Ciais, P., Canadell, J. G., Janssens, I. A., Fernández-Martínez, M., Carnicer, J., … Sardans, J. (2017). Shifting from fertilization-dominated to a warming-dominated period. Nature Ecology and Evolution, 1, 1438-1445. https://doi.org/10.1038/s41559-017-0274-8
Penuelas, J., & Estiarte, J. (1997). Trends in carbon composition and plant demand for nitrogen throughout this century. Oecologia, 109, 69-73. https://doi.org/10.1007/s004420050059
Penuelas, J., Fernández-Martínez, M., Ciais, P., Jou, D., Piao, S., Obersteiner, M., … Sardans, J. (2019). The bioelements, the elementome, and the biogeochemical niche. Ecology, 100(5), e02652. https://doi.org/10.1002/ecy.2652
Penuelas, J., Gargallo-Garriga, A., Jannssens, I., Ciais, P., Obersteiner, M., Klem, K., … Sardans, J. (2019) Global intensification of N fertilisation may increase allergenic proteins and spread coeliac pathology. Lancet Planetary Health. In review.
Penuelas, J., Janssens, I. A., Ciais, P., Obersteiner, M., Krisztin, T., Piao, S., & Sardans, J. (2017) Increasing gap in human height between rich and poor countries associated to their different intakes of N and P. Scientific Reports, 7. https://doi.org/10.1038/s41598-017-17880-3
Penuelas, J., & Matamala, R. (1990). Changes in N and S leaf content, stomatal density and specific leaf area of 14 plant species during the last three centuries of CO2 increase. Journal of Experimental Botany, 41, 1119-1124. https://doi.org/10.1093/jxb/41.9.1119
Penuelas, J., Poulter, B., Sardans, J., Ciais, P., van der Velde, M., Bopp, L., … Janssens, I. A. (2013). Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4, 2934. https://doi.org/10.1038/ncomms3934
Penuelas, J., & Sardans, J. (2009). Elementary factors. Nature, 460, 803-804. https://doi.org/10.1038/460803a
Penuelas, J., Sardans, J., Alcañiz, J. M., & Poch, J. M. (2009). Increased eutrophication and nutrient imbalances in the Agricultural soil of NE Catalonia, Spain. Journal of Environmental Biology, 30, 841-846.
Penuelas, J., Sardans, J., Llusià, J., Owen, S. M., Carnicer, J., Giambeluca, T. W., … Niinemets, Ü. (2010). Faster return on “leaf economics” and different biogeochemical niche in invasive compared with native plant species. Global Change Biology, 16, 2171-2185. https://doi.org/10.1111/j.1365-2486.2009.02054.x
Penuelas, J., Sardans, J., Rivas-Ubach, A., & Janssens, I. A. (2012). The human-induced imbalance between C, N and P in Earth's life system. Global Change Biology, 2012(18), 3-6. https://doi.org/10.1111/j.1365-2486.2011.02568.x
Petersen, J., van Bergen, J., Loh, K. L., Kooy-Winkelaar, Y., Beringer, D. X., Thompson, A., … Koning, F. (2015). Determinants of Gliadin-specific T cell selection in Celiac disease. The Journal of Immunology, 194, 6112-6122. https://doi.org/10.4049/jimmunol.1500161
Plum, C., Husener, M., & Hillebrand, H. (2015). Multiple vs. single phytoplankton species alter stoichiometry of trophic interaction with zooplankton. Ecology, 96, 3075-3089. https://doi.org/10.1890/15-0393.1
Prasad, C. S., Mandal, A. B., Gowda, N. K. S., Sharma, K., Pattanaik, A. K., Tyagi, P. K., & Elangovan, A. V. (2015). Enhancing phosphorus utilization for better animal production and environment sustainability. Current Science, 108, 1315-1319.
Prietzel, J., & Stetter, U. (2010). Long-term trends of phosphorus nutrition and topsoil phosphorus stocks in unfertilized and fertilized Scots pine (Pinus sylvestris) stands at two sites in Southern Germany. Forest Ecology and Management, 259(6), 1141-1150. https://doi.org/10.1016/j.foreco.2009.12.030
Rahman, S., Chowdhury, R. B., D'Costa, N. G., Milne, N., Bhuiyan, M., & Sujauddin, M. (2019). Determining the potential role of the waste sector in decoupling of phosphorus: A comprehensive review of national scale substance flow analyses. Resources, Conservation & Recycling, 144, 144-157. https://doi.org/10.1016/j.resconrec.2019.01.022
Rajaud, A., & de Noblet-Ducoudré, N. (2017). Tropical semi-arid regions expanding over temperate latitudes under climate change. Climate Change, 144, 703-719. https://doi.org/10.1007/s10584-017-2052-7
Ramesh, R., Robin, R. S., & Purvaja, R. (2015). An inventory on the phosphorus flux of major Indian rivers. An inventory on the phosphorus flux of major Indian rivers. Current Science, 108, 1294-1299.
Rao, A. S., Srivastava, S., & Ganeshamurty, A. N. (2015). Phosphorus supply may dictate food security prospects in India. Current Science, 108, 1253-1261.
Reay, D. S., Dentener, F., Smith, P., Grace, J., & Feely, R. A. (2008). Global nitrogen deposition and carbon sinks. Nature Geoscience, 1, 430-437. https://doi.org/10.1038/ngeo230
Reijnders, L. (2014). Phosphorus resources, their depletion and conservation, a review. Resources, Conservation and Recycling, 93, 32-49. https://doi.org/10.1016/j.resconrec.2014.09.006
Ren, C., Chen, J., Deng, J., Zhao, F., Han, X., Yang, G., … Ren, G. (2017). Response of microbial diversity to C:N:P stoichiometry in fine root and microbial biomass following afforestation. Biology and Fertility and Soils, 53, 457-468. https://doi.org/10.1007/s00374-017-1197-x
Ren, C., Zhao, F., Kang, D. I., Yang, G., Han, X., Tong, X., … Ren, G. (2016). Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmland. Forest Ecology and Management, 376, 59-66. https://doi.org/10.1016/j.foreco.2016.06.004
Rivas-Ubach, A., Sardans, J., Pérez-Trujillo, M., Estiarte, M., & Penuelas, J. (2012). Strong relationships between elemental stoichiometry and metabolome in plants. Proceedings of the National Academy of Sciences of the United States of America, 12, 41-81. https://doi.org/10.1073/pnas.1116092109
Robinson, E., & Robbins, R. C. (1970). Gaseous nitrogen compounds pollutants from urban and natural sources. Air Pollution Control Assessment, 20, 303-306. https://doi.org/10.1080/00022470.1970.10469405
Romero, E., Ludwig, W., Sadaoui, M., Lassaletta, L., Bouwman, L., Beusen, A., …Penuelas, J. (2019). N and P fluxes in Mediterranean river Basins: A clue of human induced N and P decoupling at different scales. Science Advances. Submited.
Rosemarin, A., & Ekane, N. (2016). The governance gap surrounding phosphorus. Nutrient Cycling in Agroecosystems, 104, 265-279. https://doi.org/10.1007/s10705-015-9747-9
Rowe, H., Withers, P. J. A., Baas, P., Chan, N. I., Doody, D., Holiman, J., … Weintraub, M. N. (2016). Integrating legacy soil phosphorus into sustainable nutrient Management strategies for future food, bioenergy and water security. Nutrient Cycling in Agroecosystems, 104, 383-412. https://doi.org/10.1007/s10705-015-9726-1
Roy, E. D. (2017). Phosphorus recovery and recycling with Ecological engineering: A review. Ecological Engineering, 98, 213-227. https://doi.org/10.1016/j.ecoleng.2016.10.076
Ruiz-Fernández, A. C., Frignani, M., Tesi, T., Bojorquez-Leyva, H., Bellucci, L. G., & Paez-Osuna, F. (2007). Recent sedimentary history of organic matter and nutrient accumulation in the Ohuira Lagoon, northwestern Mexico. Archives of Environmental Contamination and Toxicology, 53, 159-167. https://doi.org/10.1007/s00244-006-0122-3
Sanyal, S. K., Dwivedi, B. S., Singh, V. K., Majumdar, K., Datta, S. C., Pattanayak, S. K., & Annapurna, K. (2015). Phosphorus in relation to dominant cropping sequences in India: Chemistry, fertility relations and management options. Current Science, 108, 1262-1270. https://doi.org/10.18520/cs%2Fv108%2Fi7%2F1262-1270
Sardans, J., Alonso, R., Carnicer, J., Fernández-Martínez, M., Vivcanco, M. G., & Penuelas, J. (2016). Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain. Perspectives in Plant Ecology, Evolution and Systematics, 18, 52-69. https://doi.org/10.1016/j.ppees.2016.01.001
Sardans, J., Bartrons, M., Margalef, O., Gargallo-Garriga, A., Janssens, I. A., Ciais, P., … Penuelas, J. (2017). Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Global Change Biology, 23, 1282-1291. https://doi.org/10.111/gcb.13384
Sardans, J., Grau, O., Chen, H. Y. H., Janssens, I. A., Ciais, P., Piao, S., & Penuelas, J. (2017). Changes in nutrient concentrations of leaves and roots in response to global change factors. Global Change Biology, 23, 3849-3856. https://doi.org/10.1111/gcb.13721
Sardans, J., Janssens, I. A., Alonso, R., Veresoglou, S. D., Rillig, M. C., Sanders, T. G. M., … Penuelas, J. (2015). Foliar elemental composition of European forest tree species associated with evolutionary traits and present Environmental and competitive conditions. Global Ecology and Biogeography, 24, 240-255. https://doi.org/10.1111/geb.12253
Sardans, J., & Penuelas, J. (2007). Drought changes phosphorus and potassium accumulation patterns in an evergreen Mediterranean forest. Functional Ecology, 21, 191-201. https://doi.org/10.1111/j.1365-2435.2007.01247.x
Sardans, J., & Penuelas, J. (2012). The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiology, 160, 1741-1761. https://doi.org/10.1104/pp.112.208785
Sardans, J., & Penuelas, J. (2013a). Plant-soil interactions in Mediterranean forest and shrublands: Impacts of climate change. Plant and Soil, 365, 1-33. https://doi.org/10.1007/s11104-013-1591-6
Sardans, J., & Penuelas, J. (2013b). Tree growth changes with climate and forest type are associated with relative allocation of nutrients, especially phosphorus, to leaves and wood. Global Ecology and Biogeography, 22, 494-507. https://doi.org/10.1111/geb.12015
Sardans, J., & Penuelas, J. (2014). Hydraulic redistribution by plants and nutrient stoichiometry: Shifts under global change. Ecohydrology, 7, 1-20. https://doi.org/10.1002/eco.1459
Sardans, J., & Penuelas, J. (2015). Tress increase their P:N ratio with size. Global Ecology and Biogeography, 24, 147-156. https://doi.org/10.1111/geb.12231
Sardans, J., Penuelas, J., Estiarte, M., & Prieto, P. (2008). Warming and drought alter C and N concentration, allocation and accumulation in a Mediterranean shrubland. Global Change Biology, 14, 2304-2316. https://doi.org/10.1111/j.1365-2486.2008.01656.x
Sardans, J., Penuelas, J., Prieto, P., & Estiarte, M. (2008). Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a Mediterranean shrubland. Plant and Soil, 306, 261-271. https://doi.org/10.1007/s11104-008-9583-7
Sardans, J., Rivas-Ubach, A., Estiarte, M., Ogaya, R., & Penuelas, J. (2013). Field-simulated droughts affect elemental leaf stoichiometry in Mediterranean forest and shrublands. Acta Oecologica, 50, 20-31. https://doi.org/10.1016/j.actao.2013.04.002
Sardans, J., Rivas-Ubach, A., & Penuelas, J. (2012a). The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function; a review and perspectives. Biogeochemistry, 111, 1-39. https://doi.org/10.1007/s10533-011-9640-9
Sardans, J., Rivas-Ubach, A., & Penuelas, J. (2012b). The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspectives in Plant Ecology, Evolution and Systematics, 14, 33-47. https://doi.org/10.1016/j.ppees.2011.08.002
Sardans, J., Rodà, F., & Penuelas, J. (2004). Phosphorus limitation and competitive capacities of Pinus halepensis and Quercus ilex subsp. rotundifolia on different soils. Plant Ecology, 174, 305-317.
Sasaki, T., Yoshhihara, T., Jamsran, U., & Ohkuro, T. (2010). Ecological stoichiometry explains larger-scale facilitation processes by shrubs on species coexistence among understory plants. Ecological Engineering, 35, 1070-1075. https://doi.org/10.1016/j.ecoleng.2010.04.020
Sattari, S. Z., Bouwman, A. F., Giller, K. E., & van Ittersum, M. K. (2012). Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proceedings of the National Academy of Sciences of the United States of America, 109, 6348-6353. https://doi.org/10.1073/pnas.1113675109
Scharler, U. M., Ulanowicz, R. E., Fogel, M. L., Wooller, M. J., Jacobson-Meyers, M. E., Lovelock, C. E., … Shearer, C. (2015). Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system. Oecologia, 179, 863-876. https://doi.org/10.1007/soo442-015-3379-2
Schindler, D. W., Wolfe, A. P., Vinebrooke, R., Crowe, A., Blais, J. M., Miskimmin, B., … Perren, B. (2008). The cultural eutrophication of Lac la Biche, Alberta, Canada: A paleoecological study. Canadian Journal Fisheries and Aquatic Science, 65, 2211-2223. https://doi.org/10.1139/F08-117
Schlesinger, W. H. (2009). On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 106(1), 203-208. https://doi.org/10.1073/pnas.0810193105
Schmitz, A., Sanders, T. G. M., Bolte, A., Bussotti, F., Dirnböck, T., Johnson, J., … de Vries, W. (2019). Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environmental Pollution, 244, 980-994. https://doi.org/10.1016/j.envpol.2018.09.101
Schröder, J. J., Smit, A. L., Cordell, D., & Rosemarin, A. (2011). Improved phosphorus use efficiency in agriculture: A key requirement for its sustainable use. Chemosphere, 84, 822-831. https://doi.org/10.1016/j.chemosphere.2011.01.065
Seabloom, E. W., Borer, E. T., Buckley, Y. M., Cleland, E. E., Davies, K. F., Firn, J., … Yang, L. (2015). Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 6, 7710. https://doi.org/10.1038/ncomms8710
Selles, F., McConkey, B. G., & Campbell, C. A. (1999). Distribution and forms of P under cultivation- and zero-tillage for continuous- and fallow-wheat cropping systems in the semi-arid Canadian prairies. Soil & Tillage Research, 51, 47-59. https://doi.org/10.1016/S0167-1987(99)00027-6
Shao, Y., Zhang, W., Eisenhauer, N., Liu, T., Xiong, Y., Liang, C., & Fu, S. (2017). Nitrogen deposition cancels out exotic earthworm effects on plant-feeding nematode communities. Journal of Animal Ecology, 86, 708-717. https://doi.org/10.1111/1365-2656.12600
Shewry, P. R., Tatham, A. S., & Halford, N. G. (2001). Nutritional control of storage protein synthesis in developing grain of wheat and barley. Plant Growth Regulation, 34, 105-111. https://doi.org/10.1023/a:1013382803849
Shurin, J. B., Gruner, D. S., & Hillebrand, H. (2006). All wet or dried up? Real differences between aquatic and terrestrial food webs. Proceedings Royal Society B, 273, 1-9. https://doi.org/10.1098/rspb.2005.3377
Sileshi, G. H., Nhamo, H., Mafongoya, P. L., & Tanimu, J. (2017). Stoichiometry of animal manure and implications for nutrient cycling and agriculture in sub-Saharan Africa. Nutrient Cycling in Agroecosystems, 107, 91-105. https://doi.org/10.1007/s10705-016-9817-7
Sitters, J., Atkinson, C. L., Guelzow, N., Kelly, P., & Sullivan, L. L. (2015). Woodstoich III. Spatial stoichiometry: cross-ecosystem material flows and their impact on recipient ecosystems and organisms. Oikos, 124, 920-930. https://doi.org/10.1111/oik.02392
Smil, V. (1999). Detonator of the population explosion. Nature, 400, 416. https://doi.org/10.1038/22672
Smil, V. (2000). Phosphorus in the environment: Natural flows and human interferences. Annual Review Energy and Environment, 25, 53-58. https://doi.org/10.1146/annurev.energy.25.1.53
Smil, V. (2002). Nitrogen and food production: Proteins for human diets. Ambio, 31, 126-131. https://doi.org/10.1579/0044-7447-31.2.126
Söderlund, R., & Svensson, B. H. (1976). The global nitrogen cycle. In Oikos Editorial Office (Ed.), Nitrogen, phosphorus and sulphur, global cycles (pp. 23-73). Stockholm, Sweden: Ecological Bulletin.
Srinivasarao, C., Singh, R. N., Ganeshamurthy, A. N., Singh, G., & Ali, M. (2007). Fixation and recovery of added phosphorus and potassium in different soil types of pulse-growing regions of India. Communications in Soil Science and Plant Analysis, 38, 449-460. https://doi.org/10.1008/00103620601174080
Sterner, R. W., & Elser, J. J. (2002). Ecological stoichiometry: The biology of elements from molecules to the biosphere. Princeton, NJ: Princeton University Press.
Stevens, C. J., Duprè, C., Dorland, E., Gaudnik, C., Gowing, D. J. G., Bleeker, A., … Dise, N. B. (2011). The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe. Environmental Pollution, 159, 2243-2250. https://doi.org/10.1016/j.envpol.2010.11.026
Su, J.-Q., Ding, L.-J., Xue, K., Yao, H.-Y., Quensen, J., Bai, S.-J., … Zhu, Y.-G. (2015). Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. Molecular Ecology, 24, 136-150. https://doi.org/10.1111/mec.13010
Suh, S., & Yee, S. (2011). Phosphorus use-efficiency of agriculture and food system in the US. Chemosphere, 84, 806-813. https://doi.org/10.1016/j.chemosphere.2011.01.051
Sun, Y., Peng, S., Goll, D. S., Ciais, P., Guenet, B., Guimberteau, M., … Zeng, H. (2017). Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models. Earth's Future, 5, 730-749. https://doi.org/10.1002/2016EF000472
Szögi, A. A., Vanotti, M. B., & Hunt, P. G. (2015). Phosphorus recovery from pig manure solids prior to land application. Journal of Environmental Management, 157, 1-7. https://doi.org/10.1016/j.jenvman.2015.04.010
Takeda, E., Yamamoto, H., Yamanaka-Okumura, H., & Taketani, Y. (2014). Increasing dietary phosphorus intake from food additives: Potential negative impact on bone health. Advances in Nutrition, 5, 92-97. https://doi.org/10.3945/an.113.004002
Talboys, P. J., Heppell, J., Roose, T., Healey, J. R., Jones, D. L., & Withers, P. J. A. (2016). Struvite: A slow-release fertilizer for sustainable phosphorus management? Plant and Soil, 401, 109-123. https://doi.org/10.1007/s11104-015-2747-3
Thitanuwat, B., Polpresert, C., & Englande, A. J. (2016). Quantification of phosphorus flows throughout the consumption system of Bangkok Metropolis, Thailand. Science of the Total Environment, 542, 1106-1116. https://doi.org/10.1016/j.scitotenv.2015.09.065
Tilman, D., Fargione, J., Wolf, B., D'Antonio, C., Dobson, A., Howarth, R., … Swackhamer, D. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 281-284. https://doi.org/10.1126/science.1057544
Tong, Y., Wang, M., Penuelas, J., Liu, X., Paerl, H. W., Sardans, J., … Lin, Y. (2019). Shifts in Lake Nitrogen:Phosphorus ratios driven by rapid improvement of municipal wastewater treatment. Nature Geosciences. Under revision.
Turner, R. E., Rabalais, N. N., & Justic, D. (2006). Predicting summer hypoxia in the northern Gulf of Mexico: Riverine N, P, and Si loading. Marine Pollution Bulletin, 52, 139-148. https://doi.org/10.1016/j.marpolbul.2005.08.012
Turner, R. E., Rabalais, N. N., Justic, D., & Dortch, Q. (2003). Global patterns of dissolved N, P and Si in large rivers. Biogeochemistry, 64, 297-317. https://doi.org/10.1023/a:1024960007569
Ulm, F., Hellmann, C., Cruz, C., & Máguas, C. (2016). N/P imbalance as a key driver for the invasion of oligotrophic dune systems by a Woody legume. Oikos, 126, 231-240. https://doi.org/10.1111/oik.03810
Urbina, I., Grau, O., Sardans, J., Ninot, J. M., & Penuelas, J. (2019). Plant-soil stoichiometric changes with the shrub encroachment in the subalpine grassland in the Pyrenees. Plant and Soil. In press.
Urbina, I., Sardans, J., Beierkuhnlein, C., Jentsch, A., Backhaus, S., Grant, K., … Penuelas, J. (2015). Shifts in the elemental composition of plants during a very severe drought. Environmental and Experimental Botany, 111, 63-73. https://doi.org/10.1016/j.envexpbot.2014.10.005
Urbina, I., Sardans, J., Grau, O., Beierkuhnlein, C., Jentsch, A., Kreyling, J., & Penuelas, J. (2017). Plant community composition affects the species biogeochemical niche. Ecosphere, 8, e01801. https://doi.org/10.1002/ecs2.1801/full
Valdés-Correcher, E., Sitters, J., Wassen, M., Brion, N., & Venterink, H. O. (2019). Herbivore dung quality affects plant community diversity. Scientific Reports, 9, 5675. https://doi.org/10.1038/s41598-019-42249-z
van der Velde, M., Folberth, C., Balkovič, J., Ciais, P., Fritz, S., Janssens, I. A., … Penuelas, J. (2014). African crop yield reductions due to increasingly unbalanced nitrogen and phosphorus consumption. Global Change Biology, 20, 1278-1288. https://doi.org/10.1111/gcb.12481
Van Dijk, K. C., Lesschen, J. P., & Oenema, O. (2016). Phosphorus flows and balances of the European unión member states. Sceince of the Total Environment, 542, 1078-1093. https://doi.org/10.1016/j.scitotenv.2015.08.048
Van Vuuren, D. P., Bouwman, L. F., Smith, S. J., & Dentener, F. (2011). Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: An assessment of ecenarios in the scientific literature. Current Opinion in Environmental Sustainability, 3, 359-369. https://doi.org/10.1016/j.cosust.2011.08.014
Van Vuuren, M. M., Robinson, D., Fitter, A. H., Chasalow, S. D., Williamson, L., & Raven, J. A. (2008). Effects of elevated atmospheric CO2 and soil water availability on root biomass, root length, and N, P and K uptake by wheat. New Phytologist, 135, 455-465. https://doi.org/10.1046/j.1469-8137.1997.00682.x
Vandamme, E., Rose, T., Saito, K., Jeong, K., & Wissuwa, M. (2016). Integration of P acquisition efficiency, P utilization efficiency and low grain P concentrations into P-efficient rice genotypes for specific target environments. Nutrient Cycling in Agroecosystems, 104, 413-427. https://doi.org/10.1007/s10705-015-9716-3
Vanni, M. J., Flecker, A. S., Hood, J. M., & Headworth, J. L. (2002). Stoichiometry of nutrient recycling by vertebrates in a tropical stream: Linking species identity and ecosystem processes. Ecology Letters, 5(2), 285-293. https://doi.org/10.1046/j.1461-0248.2002.00314.x
Vass, K. K., Wangeneo, A., Samanta, S., Adhikari, S., & Muralidhar, M. (2015). Phosphorus dynamics, eutrophication and fisheries in the aquatic ecosystems in India. Current Science, 108, 1306-1314.
Veresoglou, S. D., Penuelas, J., Fischer, R., Rautio, P., Sardans, J., Merilä, P., … Rillig, M. C. (2014). Exploring continental-scale stand Health-N:P ratio relationships for European forest. New Phytologist, 202, 422-430. https://doi.org/10.1111/nph.12665
Vogels, J. J., Verbek, W. C. E. P., Lamers, L. P. M., & Siepel, H. (2017). Can changes in soil biochemistry and plant stoichiometry explain loss of animal diversity of heathlands? Biological Conservation, 212, 432-447. https://doi.org/10.1016/j.biocon.2016.2016.08.039
Wang, H.-Y., Wang, Z.-W., Ding, R., Hou, S.-L., Yang, G.-J., Lü, X.-T., & Han, X.-G. (2018). The impacts of nitrogen deposition on community N:P stoichiometry do not depend on phosphorus availability in a temperate meadow steppe. Environmental Pollution, 242, 82-89. https://doi.org/10.1016/j.envpol.2018.06.088
Wang, J. Q., Liu, X. Y., Zhang, X. H., Li, L. Q., Lam, S. K., & Pan, G. X. (2019). Changes in plant C, N and P ratios under elevated [CO2] and canopy warming in a rice-winter wheat rotation system. Scientific Reports, 9(1), https://doi.org/10.1038/s41598-019-41944-1
Wang, M., Ma, L., Strokal, M., Chu, Y., & Kroeze, C. (2018). Exploring nutrient Management options to increase nitrogen and phosphorus use efficiencies in food production of China. Agricultural Systems, 163, 58-72. https://doi.org/10.1016/j.agsy.2017.01.001
Wang, R., Balkanski, Y., Boucher, O., Ciais, P., Penuelas, J., & Tao, S. (2015). Significant contribution of combustión-related emissions to the atmospheric phosphorus budget. Nature Geosciences, 8, 48-54. https://doi.org/10.1038/NGEO2324
Wang, R., Goll, D., Balkanski, Y., Hauglustaine, D. M., Boucher, O., Ciais, P., … Tao, S. (2017). Global forest carbón uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Global Change Biology, 23, 1-19. https://doi.org/10.1111/gcb.13766
Wang, S., Zhang, Y., Ju, W., Ciais, P., Cescatti, A., Sardans, J., … Penuelas, J. (2019). Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Nature. Under revision.
Wang, W., Liu, X., Xu, J., Dore, A. J., & Xu, W. (2018). Imbalanced nitrogen and phosphorus deposition in the urban and forest environments in southern Tibet. Atmospheric Pollution Research, 9, 774-782. https://doi.org/10.1016/j.apr.2018.02.002
Wang, W., Min, Q., Sardans, J., Asensio, D., Bartrons, M., & Penuelas, J. (2016). Organic cultivation of Jasmine and tea increases carbón sequestration by changing plant and soil stoichiometry. Agronomic Journal, 108, 1636-1648. https://doi.org/10.2134/agronj2015.0559
Wang, W., Sardans, J., Tong, C., Wang, C., Ouyang, L., Bartrons, M., & Penuelas, J. (2016). Typhoon enhancement of N and P release from litter and changes in the litter N:P ratio in a subtropical tidal wetland. Environmental Research Letters, 11, 014003. https://doi.org/10.1088/1748-9326/11/1/014003
Wang, W., Sardans, J., Wang, C., Zeng, C., Tong, C., Asensio, D., & Penuelas, J. (2017). Relationships between the potential production of the greenhouse gases CO2, CH4 and N2O and soil concentrations of C, N and P across 26 paddy fields in southern China. Atmospheric Environment, 164, 458-467. https://doi.org/10.1016/j.atmosenv.2017.06.023
Wang, W., Sardans, J., Wang, C., Zeng, C., Tong, C., Chen, G., … Penuelas, J. (2018). The response of stocks of C, N and P to plant invasion in the coastal wetlands of China. Global Change Biology, 25, 733-743. https://doi.org/10.1111/gcb.14491
Wang, W., Sardans, J., Zeng, C. S., Tong, C., Wang, C., & Penuelas, J. (2016). Impact of plant invasion and increasing floods on total soil phosphorus and its fractions in the Minjiang RIver estuarine wetlands, China. Wetlands, 36, 21-36. https://doi.org/10.1007/s13157-015-0712-9
Wang, W., Sardans, J., Zeng, C., Zhong, C., Li, Y., & Penuelas, J. (2014). Responses of soil nutrient concentrations and stoichiometry to different human land uses in a subtropical tidal wetland. Geoderma, 232-234, 459-470. https://doi.org/10.1016/j.geoderma.2014.06.004
Wang, W., Wang, C., Sardans, J., Tong, C., Jia, R., Zeng, C. S., & Penuelas, J. (2015). Food regime affects soil stoichiometry and the distribution of the invasive plants in subtropical estuarine wetlands in China. Catena, 128, 144-154. https://doi.org/10.1016/j.catena.2015.01.017
Wang, Y., Ciais, P., Goll, D., Huang, Y., Luo, Y., Wang, Y.-P., … Zechmeister-Boltenstern, S. (2018). GOLUM-CNP v 1.0: A data-driven modeling of carbon, nitrogen and phosphorus cycles in major terrestrial biomes. Geoscience Model Development, 11, 3903-3928. https://doi.org/10.5194/gmd-11-3903-2018
Wardle, D. A., Wiser, S. K., Allen, R. B., Doherty, J. E., Bonner, K. I., & Williamson, W. M. (2008). Aboveground and belowground effects of single-tree removals in New Zealand rain forest. Ecology, 89, 1232-1245. https://doi.org/10.1890/07-1543.1
Wassen, M. J., Olde Venterink, H., Lapshina, E. D., & Tanneberger, F. (2005). Endangered plants persist under phosphorus limitation. Nature, 437, 547-550. https://doi.org/10.1038/nature03950
Wei, C., Zheng, H., Li, Q. I., Lü, X., Yu, Q., Zhang, H., … Han, X. (2012). Nitrogen addition regulates soil nematode community composition through ammonium suppression. PLoS ONE, 7, e43384. https://doi.org/10.1371/Journal.pone.0043384
Wei, P., & Huang, L. M. (2010). Water quality and eutrophication in the Guangzhou Sea Zone of the Pearl River estuary. Chinese Journal of Oceanology and Limnology, 28, 113-121. https://doi.org/10.1007/s00343-010-9032-3
Weikard, H. P. (2016). Phosphorus recycling and food security in the long run: A conceptual modelling approach. Food Security, 8, 405-414. https://doi.org/10.1007/s12571-016-0551-4
Wironen, M. B., Bennett, E. M., & Erickson, J. D. (2018). Phosphorus flows and legacy accumulation in an animal-dominated agricultural region from 1925 to 2012. Global Environmental Change, 50, 88-99. https://doi.org/10.1016/j.gloencha.2018.02.017
Withers, P. J. A., Doody, D. G., & Sylvester-Bradley, R. (2018). Achieving sustainable phosphorus use in food systems through circularization. Sustainability, 10, artnum1804. https://doi.org/10.3390/su10061804
Withers, P. J. A., Rodrigues, M., Soltangheisi, A., de Carvalho, T. S., Guilherme, L. R. G., Benites, V. M., … Pavinato, P. S. (2018). Transitions to sustainable management of phosphorus in Brazilian agriculture. Scientific Reports, 8, 2537. https://doi.org/10.1038/s41598-018-20887-z
Withers, P. J. A., van Dijk, K. C., Neset, T. S. S., Nesme, T., Onema, O., Rubaek, G. H., … Pellerin, S. (2015). Stewardship to tackle global phosphorus inefficiency: The case of Europe. Ambio, 44, S193-S206. https://doi.org/10.1007/s13280-014.0614-8
Wu, J., Franzén, D., & Malmström, M. E. (2016). Anthropogenic phosphorus flows under different scenarios for the city of Stockholm, Sweden. Science of the Total Environment, 542, 1094-1105. https://doi.org/10.1016/j.scitotenv.2015.09.024
Wulaningsih, W., Michaelsson, K., Garmo, H., Hammar, N., Jungner, I., Walldius, G., … Hemelrijck, M. (2013). Inorganic phosphate and the risk of cancer in the Swedish AMORIS study. BMC Cancer, 13, 257. https://doi.org/10.1186/1471-2407-13-257
Xi, B., Zhai, L. M., Liu, J., Wang, H. Y., Luo, C. Y., Ren, T. Z., & Liu, H. B. (2016). Long-term phosphorus accumulation and agronomic and environmental critical phosphorus levels in Haplic Luvisol soil, northern China. Journal of Integrative Agriculture, 15, 200-208.
Xu, X. Y., Pu, L. J., Li, J. G., & Zhu, M. (2019). Effect of reclamation on C, N and P stoichiometry in soil and soil aggregates of a coastal wetland in eastern China. Journal of Soils and Sediments, 19, 1215-1255. https://doi.org/10.1007/s11368-018-2131-z
Xu, X. J., & Timmer, V. R. (1998). Biomass and nutrient dynamics of Chinese fir seedlings under conventional and exponential fertilization regimes. Plant and Soil, 203, 313-322. https://doi.org/10.1023/A:1004307325328
Yang, X. X., Li, M. Q., He, X. D., Wang, X. Z., You, W. X., Yu, D., … Chen, N. (2018). Relationship between vegetation C, N, P stoichiometry and species diversity in sand land. Yingyong Shangtai Xuebao, 29, 2819-2824. https://doi.org/10.13287/j.1001-9332.201809.016
Yara Fertilizer. (2018). Fertilizer industry handbook. Retrieved from https://www.yara.com/siteassets/investors/057-reports-and-presentations/other/2018/fertilizer-industry-handbook-2018
Yin, K., & Harrison, P. J. (2007). Influence of the Pearl River estuary and vertical mixing in Victoria Harboron water quality in relation to eutrophication impacts in Hong Kong waters. Marine Pollution Bulletin, 54, 646-656. https://doi.org/10.1016/j.marpolbul.2007.03.001
Yin, K. D., Song, X. X., Sun, J., & Wu, M. C. S. (2004). Potential P limitation leads to excess N in the pearl river estuarine coastal plume. Continental Shelf Research, 24, 1895-1907. https://doi.org/10.1016/j.csr.2004.06.014
Yu, T., Dai, D., Lei, K., He, C. D., Cong, H. B., Fu, G., … Wu, F. C. (2018). δ15N and nutrient stoichiometry of water, aquatic organisms and environmental implications in Taihu lake, China. Environmental Pollution, 237, 166-173. https://doi.org/10.1016/j.envpol.2018.02.048
Yuan, Z. Y., & Chen, H. Y. H. (2015). Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nature Climate Change, 5, 465-469. https://doi.org/10.1038/nclimate2549
Yuan, Z., Jiang, S., Sheng, H., Liu, X., Hua, H., Liu, X., & Zhang, Y. (2018). Human perturbation of the global phosphorus cycle: Changes and consequences. Environmental, Science & Technology, 52, 2438-2450. https://doi.org/10.1021/acs.est.7b03910
Yuan, Z. Y., Jiao, F., Shi, X. R., Sardans, J., Maestre, F. T., Delgado-Baquerizo, M., & Penuelas, J. (2017). Experimental and observational studies, find contrasting responses of soil nutrients to climate change. eLife, 6, e23255. https://doi.org/10.7554/eLife.23255.
Yue, K., Fornara, D. A., Yang, W., Peng, Y., Li, Z., Wu, F., & Peng, C. (2017). Effects of three global change drivers on terrestrial C:N:P stoichiometry: A global synthesis. Global Change Biology, 23, 2450-2463. https://doi.org/10.111/gcb.13569
Zaehle, S., & Dalmonech, D. (2011). Carbon-nitrogen interactions on land at global scales: Current understanding in modelling climate biosphere feedbacks. Current Opinion Environmental Sustainability, 3, 311-320. https://doi.org/10.1016/j.cosust.2011.08.008
Zarch, M. A. A., Sivakumar, B., Malekinezhad, H., & Sharma, A. (2017). Future aridity under conditions of global climate change. Journal of Hydrology, 554, 451-469. https://doi.org/10.1016/j.jhydrol.2017.08.043
Zechmeister-Boltenstren, S., Keiblinger, K. M., Mooshammer, M., Penuelas, J., Richter, A., Sardans, J., & Wanek, W. (2015). The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecological Monographs, 85, 133-135. https://doi.org/10.1890/14-0777.1.sm
Zhang, J., Zhang, Z. F., Liu, S. M., Wu, H., Xiong, H., & Chen, H. T. (1999). Human impacts on the large world rivers: Would the Changjiang (Yangtze River) be an illustration? Global Biogeochemical Cycles, 13, 1099-1105. https://doi.org/10.1029/1999gb900044
Zhang, K. F., Greenwood, D. J., White, P. J., & Burns, I. G. (2007). A dynamic model for the combined effects on N, P and K fertilizers on yield and mineral composition; description and experimental test. Plant and Soil, 298, 81-98. https://doi.org/10.1007/s11104-007-9342-1
Zhang, L. X., Bai, Y. F., & Han, X. G. (2004). Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Botanica Sinica, 46, 259-270.
Zhang, N., Guo, R., Song, P., Guo, J., & Gao, Y. (2013). Effects of warming and nitrogen deposition on the coupling mechanism between soil nitrogen and phosphorus in Songnen meadow steppe, northeastern China. Soil Biology and Biochemistry, 65, 96-104. https://doi.org/10.1016/j.soilbio.2013.05.015
Zhang, Q., Brady, D. C., Boynton, W. R., & Ball, W. P. (2015). Long-term trends of nutrients and sediment from the non-tidal Chesapeake watershed: An assessment of progress by river and season. Journal of the American Water Resources Association, American Water Resources Association, 51, 1534-1555. https://doi.org/10.1111/1752-1688.12327
Zhang, T., Chen, H. Y. H., & Ruan, H. (2018). Global negative effects of nitrogen deposition on soil microbes. The ISME Journal, 12, 1817-1825. https://doi.org/10.1038/s41396-018-0096-y
Zhang, W., Gao, D. X., Chen, Z. X., Li, H., Deng, J., Qiao, W. J., … Huang, J. Y. (2018). Substrate quality and soil environmental conditions predict litter decomposition and drive soil nutrient dynamics following afforestation on the Loess Plateau of China. Geoderma, 325, 152-161. https://doi.org/10.1016/j.geoderma.2018.03.027
Zhang, W., Li, H., & Li, Y. (2019). Spatio-temporal dynamics of nitrogen and phosphorus input budgets in a global hotspot of anthropogenic inputs. Science of the Total Environment, 656, 1108-1120. https://doi.org/10.1016/j.scitotenv.2018.11.450
Zhang, W., Liu, W., Xu, M., Deng, J., Han, X., Yang, G., … Ren, G. (2019). Response of forest growth to C:N:P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China. Geoderma, 337, 280-289. https://doi.org/10.1016/j.geoderma.2018.09.042
Zhao, F. Z., Sun, J., Ren, C. J., Kang, D., Deng, J., Han, X. H., & Ren, G. X. (2015). Land use change influences soil C, N and P stoichiometry under “grain-to-green program” in China. Scientific Reports, 5, 10195. https://doi.org/10.1038/srep10195
Zheng, B. X., Ding, K., Yang, X. R., Wadaan, M. A. M., Hozzein, W. N., Penuelas, J., & Zhu, Y. G. (2019). Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake. Science of the Total Environment, 647, 1113-1120. https://doi.org/10.1016/j.scitotenv.2018.07.454
Zheng, T., Qi, P. F., Cao, Y. L., Han, Y. N., Ma, H. L., Guo, Z. R., … Zheng, Y. L. (2018). Mechanisms of wheat (Triticum aestivum) grain storage proteins in response to nitrogen application and its impacts on processing quality. Scientific Reports, 8, 11928. https://doi.org/10.1038/s41598-018-30451-4
Zhou, Y., Boutton, T. W., & Wu, X. B. (2018a). Soil C:N:P stoichiometry responds to vegetation change from grassland to Woodland. Biogeochemistry, 140, 341-357. https://doi.org/10.1007/s10533-018-0495-1
Zhou, Y., Boutton, T. W., & Wu, X. B. (2018b). Soil phosphorus does not keep pace with soil carbon and nitrogen accumulation following woody encroachment. Global Change Biology, 24, 1992-2007. https://doi.org/10.1111/gcb.14048
Zhu, J., Wang, Q., He, N., Smith, M. D., Elser, J. J., Du, J., … Yu, Q. (2016). Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation. Journal of Geophysical Research: Biogeosciences, 121, 1605-1616. https://doi.org/10.1002/2016JG003393
Zivkovic, T., Disney, K., & Moore, T. R. (2017). Variations in nitrogen, phosphorus, and delta N-15 in Sphagnum mosses along a climatic and atmospheric gradient in eastern Canada. Botany-Botanique, 95, 829-839. https://doi.org/10.1139/cjb-2016-0314