Decreasing resilience of China's coupled nitrogen-phosphorus cycling network requires urgent action

. 2024 Jan ; 5 (1) : 48-58. [epub] 20240102

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38168780

Grantová podpora
72074077 National Natural Science Foundation of China (National Science Foundation of China)
72140006 National Natural Science Foundation of China (National Science Foundation of China)
72293602 National Natural Science Foundation of China (National Science Foundation of China)
72293600 National Natural Science Foundation of China (National Science Foundation of China)
41661144023 National Natural Science Foundation of China (National Science Foundation of China)

Odkazy

PubMed 38168780
DOI 10.1038/s43016-023-00889-5
PII: 10.1038/s43016-023-00889-5
Knihovny.cz E-zdroje

The coupled nature of the nitrogen (N) and phosphorus (P) cycling networks is of critical importance for sustainable food systems. Here we use material flow and ecological network analysis methods to map the N-P-coupled cycling network in China and evaluate its resilience. Results show a drop in resilience between 1980 and 2020, with further decreases expected by 2060 across different socio-economic pathways. Under a clean energy scenario with additional N and P demand, the resilience of the N-P-coupled cycling network would suffer considerably, especially in the N layer. China's socio-economic system may also see greater N emissions to the environment, thus disturbing the N cycle and amplifying the conflict between energy and food systems given the scarcity of P. Our findings on scenario-specific synergies and trade-offs can aid the management of N- and P-cycling networks in China by reducing chemical fertilizer use and food waste, for example.

Zobrazit více v PubMed

Cordell, D., Drangert, J.-O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009). DOI

Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008). DOI

Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008). PubMed DOI

National Bureau of Statistics of China. China Statistical Yearbook 2020 (China Statistics Press, 2020).

Barbieri, P., MacDonald, G. K., Bernard de Raymond, A. & Nesme, T. Food system resilience to phosphorus shortages on a telecoupled planet. Nat. Sustain. 5, 114–122 (2022). DOI

Zou, T., Zhang, X. & Davidson, E. A. Global trends of cropland phosphorus use and sustainability challenges. Nature 611, 81–87 (2022). PubMed DOI

Cordell, D. & White, S. Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Annu. Rev. Environ. Resour. 39, 161–188 (2014). DOI

Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015). PubMed DOI

Elser, J. & Bennett, E. A broken biogeochemical cycle. Nature 478, 29–31 (2011). PubMed DOI

Peñuelas, J. & Sardans, J. The global nitrogen–phosphorus imbalance. Science 375, 266–267 (2022). PubMed DOI

Luo, Z., Hu, S., Chen, D. & Zhu, B. From production to consumption: a coupled human-environmental nitrogen flow analysis in China. Environ. Sci. Technol. 52, 2025–2035 (2018). PubMed DOI

Liu, X. et al. Intensification of phosphorus cycling in China since the 1600s. Proc. Natl Acad. Sci. USA 113, 2609–2614 (2016). PubMed DOI PMC

Bai, Z. et al. Changes in phosphorus use and losses in the food chain of China during 1950–2010 and forecasts for 2030. Nutr. Cycl. Agroecosystems 104, 361–372 (2016). DOI

Cui, S., Shi, Y., Groffman, P. M., Schlesinger, W. H. & Zhu, Y.-G. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010). Proc. Natl Acad. Sci. USA 110, 2052–2057 (2013). PubMed DOI PMC

Liang, S. et al. Network resilience of phosphorus cycling in China has shifted by natural flows, fertilizer use and dietary transitions between 1600 and 2012. Nat. Food 1, 365–375 (2020). PubMed DOI

Zhu, Z. et al. Integrated livestock sector nitrogen pollution abatement measures could generate net benefits for human and ecosystem health in China. Nat. Food 3, 161–168 (2022). PubMed DOI

Schulte-Uebbing, L. F., Beusen, A. H. W., Bouwman, A. F. & de Vries, W. From planetary to regional boundaries for agricultural nitrogen pollution. Nature 610, 507–512 (2022). PubMed DOI

Schleuss, P. M., Widdig, M., Heintz-Buschart, A., Kirkman, K. & Spohn, M. Interactions of nitrogen and phosphorus cycling promote P acquisition and explain synergistic plant-growth responses. Ecology 101, e03003 (2020). PubMed DOI

Duhamel, S. et al. Phosphorus as an integral component of global marine biogeochemistry. Nat. Geosci. 14, 359–368 (2021). DOI

Ulanowicz, R. E. The dual nature of ecosystem dynamics. Ecol. Model. 220, 1886–1892 (2009). DOI

Penuelas, J., Janssens, I. A., Ciais, P., Obersteiner, M. & Sardans, J. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Glob. Chang. Biol. 26, 1962–1985 (2020). PubMed DOI

Krouk, G. & Kiba, T. Nitrogen and phosphorus interactions in plants: from agronomic to physiological and molecular insights. Curr. Opin. Plant Biol. 57, 104–109 (2020). PubMed DOI

Kanter, D. R. & Brownlie, W. J. Joint nitrogen and phosphorus management for sustainable development and climate goals. Environ. Sci. Policy 92, 1–8 (2019). DOI

Wolfram, P., Kyle, P., Zhang, X., Gkantonas, S. & Smith, S. Using ammonia as a shipping fuel could disturb the nitrogen cycle. Nat. Energy 7, 1112–1114 (2022). DOI

Xu, C. et al. Future material demand for automotive lithium-based batteries. Commun. Mater. 1, 99 (2020). DOI

Spears, B. M., Brownlie, W. J., Cordell, D., Hermann, L. & Mogollón, J. M. Concerns about global phosphorus demand for lithium-iron-phosphate batteries in the light electric vehicle sector. Commun. Mater. 3, 14 (2022). DOI

Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015). PubMed DOI

Nyström, M. et al. Anatomy and resilience of the global production ecosystem. Nature 575, 98–108 (2019). PubMed DOI

Ulanowicz, R. E. Growth and Development: Ecosystems Phenomenology (Springer, 1986).

Kharrazi, A., Rovenskaya, E. & Fath, B. Network structure impacts global commodity trade growth and resilience. PLoS ONE 12, e0171184 (2017). PubMed DOI PMC

Zeng, J. Thoughts on food security and financial countermeasures (in Chinese). Econ. Res. Ref. 3, 32–44 (2007).

Decision of the Central Committee of the Communist Party of China on several major issues in agriculture and rural work. Ministry of Agriculture and Rural Affairs of the People’s Republic of China http://www.moa.gov.cn/ztzl/xzgnylsn/gd/200909/t20090923_1356562.htm (1998).

Jiang, C. Y. & Wang, Y. China’s achievements, experience and thinking in promoting food security during 70 years since the founding of the People’s Republic of China (in Chinese). Agric. Econ. Prob. 10, 10–23 (2019).

Action plan for zero increase in fertilizer use by 2020. Ministry of Agriculture https://www.gov.cn/xinwen/2015-12/21/content_5026037.htm (2015).

Bai, Z. et al. China’s livestock transition: driving forces, impacts, and consequences. Sci. Adv. 4, eaar8534 (2018). PubMed DOI PMC

Wang, M., Kroeze, C., Strokal, M. & Ma, L. Reactive nitrogen losses from China’s food system for the shared socioeconomic pathways (SSPs). Sci. Total Environ. 605–606, 884–893 (2017). PubMed DOI

Zhao, H. et al. China’s future food demand and its implications for trade and environment. Nat. Sustain. 4, 1042–1051 (2021). DOI

Ritchie, H., Roser, M. & Rosado, P. Fertilizers. Our World in Data https://ourworldindata.org/fertilizers (2022).

van Grinsven, H. J. M. et al. Establishing long-term nitrogen response of global cereals to assess sustainable fertilizer rates. Nat. Food 3, 122–132 (2022). PubMed DOI PMC

Hossain, M. Z. et al. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2, 379–420 (2020). DOI

Huang, Y. et al. The shift of phosphorus transfers in global fisheries and aquaculture. Nat. Commun. 11, 355 (2020). PubMed DOI PMC

Goda, A., Saad, A., Hanafy, M., Sharawy, Z. & El-Haroun, E. Dietary effects of Azolla pinnata combined with exogenous digestive enzyme (Digestin DOI

Nagappan, S. et al. Potential of microalgae as a sustainable feed ingredient for aquaculture. J. Biotechnol. 341, 1–20 (2021). PubMed DOI

Sarker, P. K. et al. Microalgae-blend tilapia feed eliminates fishmeal and fish oil, improves growth, and is cost viable. Sci. Rep. 10, 19328 (2020). PubMed DOI PMC

Gustavsson, J. et al. Global Food Losses and Food Waste—Extent, Causes and Prevention (FAO, 2011).

Xue, L. et al. China’s food loss and waste embodies increasing environmental impacts. Nat. Food 2, 519–528 (2021). PubMed DOI

Law of the People’s Republic of China on Food Waste. The National People’s Congress of the People’s Republic of China http://www.npc.gov.cn/npc/c2/c30834/202104/t20210429_311263.html (2021).

Climate change and land. IPCC https://www.ipcc.ch/srccl (2019).

Chang, J. et al. Reconciling regional nitrogen boundaries with global food security. Nat. Food 2, 700–711 (2021). PubMed DOI

Fath, B. D. Quantifying economic and ecological sustainability. Ocean Coast. Manag. 108, 13–19 (2015). DOI

Fang, D. & Chen, B. Ecological network analysis for a virtual water network. Environ. Sci. Technol. 49, 6722–6730 (2015). PubMed DOI

Goerner, S. J., Lietaer, B. & Ulanowicz, R. E. Quantifying economic sustainability: implications for free-enterprise theory, policy and practice. Ecol. Econ. 69, 76–81 (2009). DOI

Chen, S. & Chen, B. Urban energy–water nexus: a network perspective. Appl. Energy 184, 905–914 (2016). DOI

Sheng, Y. & Song, L. Agricultural production and food consumption in China: a long-term projection. China Econ. Rev. 53, 15–29 (2019). DOI

SSP database. International Institute for Applied Systems Analysis https://tntcat.iiasa.ac.at/SspDb/ (2018).

MacFarlane, D. R. et al. A roadmap to the ammonia economy. Joule 4, 1186–1205 (2020). DOI

Ammonia Technology Roadmap Towards More Sustainable Nitrogen Fertiliser Production (International Energy Agency, 2021).

Zhou, H., Liu, Z., Cheng, M., Zhou, M. & Liu, R. Influence of coke combustion on NOx emission during iron ore sintering. Energy Fuels 29, 974–984 (2015). DOI

Yang, X., Nielsen, C. P., Song, S. & McElroy, M. B. Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen. Nat. Energy 7, 955–965 (2022). DOI

In-depth report on new energy materials industry: lithium iron phosphate revival, triple opportunities for phosphorus chemical industry (in Chinese). The Founder Securities Company http://finance.sina.com.cn/stock/stockzmt/2021-08-01/doc-ikqciyzk8929058.shtml (2019).

2021–2027 China lithium hexafluorophosphate industry market research analysis and investment strategic planning report (in Chinese). The Smart Research Consulting Company https://www.chyxx.com/research/202101/925289.html (2021).

Kober, T., Schiffer, H. W., Densing, M. & Panos, E. Global energy perspectives to 2060—WEC’s World Energy Scenarios 2019. Energy Strategy Rev. 31, 100523 (2020). DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...