Network resilience of phosphorus cycling in China has shifted by natural flows, fertilizer use and dietary transitions between 1600 and 2012

. 2020 Jun ; 1 (6) : 365-375. [epub] 20200617

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37128100

Grantová podpora
71874014 National Natural Science Foundation of China (National Science Foundation of China)
71704055 National Natural Science Foundation of China (National Science Foundation of China)
41661144023 National Natural Science Foundation of China (National Science Foundation of China)
71704015 National Natural Science Foundation of China (National Science Foundation of China)
51721093 National Natural Science Foundation of China (National Science Foundation of China)
840205 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
2018B030306032 Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)

Odkazy

PubMed 37128100
DOI 10.1038/s43016-020-0098-6
PII: 10.1038/s43016-020-0098-6
Knihovny.cz E-zdroje

The resilience of the phosphorus (P) cycling network is critical to ecosystem functioning and human activities. Although P cycling pathways have been previously mapped, a knowledge gap remains in evaluating the P network's ability to withstand shocks or disturbances. Applying principles of mass balance and ecological network analysis, we examine the network resilience of P cycling in China from 1600 to 2012. The results show that changes in network resilience have shifted from being driven by natural P flows for food production to being driven by industrial P flows for chemical fertilizer production. Urbanization has intensified the one-way journey of P, further deteriorating network resilience. Over 2000-2012, the network resilience of P cycling has decreased by 11% owing to dietary changes towards more animal-based foods. A trade-off between network resilience improvement and increasing food trade is also observed. These findings can support policy decisions for enhanced P cycling network resilience in China.

Zobrazit více v PubMed

Cordell, D., Drangert, J.-O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009). DOI

Elser, J. & Bennett, E. Phosphorus cycle: a broken biogeochemical cycle. Nature 478, 29–31 (2011). DOI

Scholz, R. W. & Wellmer, F.-W. Although there is no physical short-term scarcity of phosphorus, its resource efficiency should be improved. J. Ind. Ecol. 23, 313–318 (2019). DOI

Ulanowicz, R. E. The dual nature of ecosystem dynamics. Ecol. Model. 220, 1886–1892 (2009). DOI

Carpenter, S. R. & Bennett, E. M. Reconsideration of the planetary boundary for phosphorus. Environ. Res. Lett. 6, 014009 (2011). DOI

Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

Chen, M. & Graedel, T. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob. Environ. Change 36, 139–152 (2016).

Chowdhury, R. B., Moore, G. A., Weatherley, A. J. & Arora, M. A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales. Resour. Conserv. Recycl. 83, 213–228 (2014). DOI

Reinhard, C. T. et al. Evolution of the global phosphorus cycle. Nature 541, 386–389 (2017). DOI

Yuan, Z. et al. Human perturbation of the global phosphorus cycle: changes and consequences. Environ. Sci. Technol. 52, 2438–2450 (2018). DOI

Smil, V. Phosphorus in the environment: natural flows and human interferences. Annu. Rev. Energy Env. 25, 53–88 (2000). DOI

Liu, X. et al. Intensification of phosphorus cycling in China since the 1600s. Proc. Natl Acad. Sci. USA 113, 2609–2614 (2016). DOI

MacDonald, G. K. et al. Guiding phosphorus stewardship for multiple ecosystem services. Ecosyst. Health Sustain. 2, e01251 (2016). DOI

Sattari, S. Z., van Ittersum, M. K., Giller, K. E., Zhang, F. & Bouwman, A. F. Key role of China and its agriculture in global sustainable phosphorus management. Environ. Res. Lett. 9, 054003 (2014). DOI

Chen, M., Sun, F., Xia, X. & Chen, J. The phosphorus flow in China: a revisit from the perspective of production. Glob. Environ. Res. 19, 19–25 (2015).

Cui, S. et al. Changing urban phosphorus metabolism: evidence from Longyan City, China. Sci. Total Environ. 536, 924–932 (2015). DOI

Li, G.-L., Bai, X., Yu, S., Zhang, H. & Zhu, Y.-G. Urban phosphorus metabolism through food consumption: the case of China. J. Ind. Ecol. 16, 588–599 (2012). DOI

Li, S., Yuan, Z., Bi, J. & Wu, H. Anthropogenic phosphorus flow analysis of Hefei City, China. Sci. Total Environ. 408, 5715–5722 (2010). DOI

Ma, L. et al. Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005. Sci. Total Environ. 434, 51–61 (2012). DOI

Qiao, M., Zheng, Y.-M. & Zhu, Y.-G. Material flow analysis of phosphorus through food consumption in two megacities in northern China. Chemosphere 84, 773–778 (2011). DOI

Yuan, Z., Liu, X., Wu, H., Zhang, L. & Bi, J. Anthropogenic phosphorus flow analysis of Lujiang County, Anhui Province, Central China. Ecol. Model. 222, 1534–1543 (2011). DOI

Yuan, Z., Sun, L., Bi, J., Wu, H. & Zhang, L. Phosphorus flow analysis of the socioeconomic ecosystem of Shucheng County, China. Ecol. Appl. 21, 2822–2832 (2011). DOI

Bi, J., Chen, Q., Zhang, L. & Yuan, Z. Quantifying phosphorus flow pathways through socioeconomic systems at the county level in China. J. Ind. Ecol. 17, 452–460 (2013). DOI

Jiang, S. & Yuan, Z. Phosphorus flow patterns in the Chaohu watershed from 1978 to 2012. Environ. Sci. Technol. 49, 13973–13982 (2015). DOI

Yuan, Z., Shi, J., Wu, H., Zhang, L. & Bi, J. Understanding the anthropogenic phosphorus pathway with substance flow analysis at the city level. J. Environ. Manag. 92, 2021–2028 (2011). DOI

Bai, Z. et al. Changes in phosphorus use and losses in the food chain of China during 1950–2010 and forecasts for 2030. Nutr. Cycl. Agroecosyst. 104, 361–372 (2016). DOI

Li, G. et al. Identifying potential strategies in the key sectors of China’s food chain to implement sustainable phosphorus management: a review. Nutr. Cycl. Agroecosyst. 104, 341–359 (2016). DOI

Ma, D., Hu, S., Chen, D. & Li, Y. Substance flow analysis as a tool for the elucidation of anthropogenic phosphorus metabolism in China. J. Clean. Prod. 29–30, 188–198 (2012). DOI

Ma, D., Hu, S., Chen, D. & Li, Y. The temporal evolution of anthropogenic phosphorus consumption in China and its environmental implications. J. Ind. Ecol. 17, 566–577 (2013). DOI

Wang, F. et al. The phosphorus footprint of China’s food chain: implications for food security, natural resource management, and environmental quality. J. Environ. Qual. 40, 1081–1089 (2011). DOI

Ma, L. et al. Modeling nutrient flows in the food chain of China. J. Environ. Qual. 39, 1279 (2010). DOI

Ulanowicz, R. E. Growth and Development: Ecosystems Phenomenology (Springer, 1986).

Kharrazi, A., Rovenskaya, E. & Fath, B. D. Network structure impacts global commodity trade growth and resilience. PLoS ONE 12, e0171184 (2017). DOI

Goerner, S. J., Lietaer, B. & Ulanowicz, R. E. Quantifying economic sustainability: implications for free-enterprise theory, policy and practice. Ecol. Econ. 69, 76–81 (2009). DOI

Helin, J. & Weikard, H.-P. A model for estimating phosphorus requirements of world food production. Agric. Syst. 176, 102666 (2019). DOI

World Urbanization Prospects: The 2018 Revision; https://population.un.org/wup/country-profiles/ (United Nations, 2018).

Global Food Losses and Food Waste – Extent, Causes and Prevention (FAO, 2011).

Zhang, W. et al. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutr. Cycl. Agroecosyst. 80, 131–144 (2008). DOI

Liu, G. Food Losses and Food Waste in China: A First Estimate OECD Food, Agriculture and Fisheries Papers No. 66 (OECD, 2014).

Roy, R. N., Finck, A., Blair, G. J. & Tandon, H. L. S. Plant Nutrition for Food Security. A Guide for Integrated Nutrient Management (FAO, 2006).

Cieślik, B. & Konieczka, P. A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. J. Clean. Prod. 142, 1728–1740 (2017). DOI

Yokoyama, K. et al. Separation and recovery of phosphorus from steelmaking slags with the aid of a strong magnetic field. ISIJ Int. 47, 1541–1548 (2007). DOI

Action Plan for Zero Increase in Fertilizer Use by 2020 (Ministry of Agriculture, 2015); http://jiuban.moa.gov.cn/zwllm/tzgg/tz/201503/t20150318_4444765.htm

UN Environment Programme, International Resource Panel (2018); http://www.resourcepanel.org

Chen, S. & Chen, B. Urban energy–water nexus: a network perspective. Appl. Energy 184, 905–914 (2016). DOI

Fath, B. D. Quantifying economic and ecological sustainability. Ocean Coast. Manag. 108, 13–19 (2015). DOI

Panyam, V., Huang, H., Davis, K. & Layton, A. Bio-inspired design for robust power grid networks. Appl. Energy 251, 113349 (2019). DOI

Kharrazi, A. & Fath, B. D. Measuring global oil trade dependencies: an application of the point-wise mutual information method. Energy Policy 88, 271–277 (2016). DOI

Ang, B. W. & Zhang, F. Q. A survey of index decomposition analysis in energy and environmental studies. Energy 25, 1149–1176 (2000). DOI

Weik, M. H. in Computer Science and Communications Dictionary (ed. Weik, M. H.) 1074–1074 (Springer, 2001).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Decreasing resilience of China's coupled nitrogen-phosphorus cycling network requires urgent action

. 2024 Jan ; 5 (1) : 48-58. [epub] 20240102

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...