Network resilience of phosphorus cycling in China has shifted by natural flows, fertilizer use and dietary transitions between 1600 and 2012
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
71874014
National Natural Science Foundation of China (National Science Foundation of China)
71704055
National Natural Science Foundation of China (National Science Foundation of China)
41661144023
National Natural Science Foundation of China (National Science Foundation of China)
71704015
National Natural Science Foundation of China (National Science Foundation of China)
51721093
National Natural Science Foundation of China (National Science Foundation of China)
840205
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
2018B030306032
Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
PubMed
37128100
DOI
10.1038/s43016-020-0098-6
PII: 10.1038/s43016-020-0098-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The resilience of the phosphorus (P) cycling network is critical to ecosystem functioning and human activities. Although P cycling pathways have been previously mapped, a knowledge gap remains in evaluating the P network's ability to withstand shocks or disturbances. Applying principles of mass balance and ecological network analysis, we examine the network resilience of P cycling in China from 1600 to 2012. The results show that changes in network resilience have shifted from being driven by natural P flows for food production to being driven by industrial P flows for chemical fertilizer production. Urbanization has intensified the one-way journey of P, further deteriorating network resilience. Over 2000-2012, the network resilience of P cycling has decreased by 11% owing to dietary changes towards more animal-based foods. A trade-off between network resilience improvement and increasing food trade is also observed. These findings can support policy decisions for enhanced P cycling network resilience in China.
Biology Department Towson University Towson MD USA
Department of Chemical Engineering Tsinghua University Beijing P R China
Department of Civil and Environmental Engineering University of Michigan Ann Arbor MI USA
Environmental Studies Masaryk University Brno Czech Republic
International Institute for Applied System Analysis Laxenburg Austria
School of Business East China University of Science and Technology Shanghai P R China
School of Environmental Science and Engineering Sun Yat sen University Guangzhou P R China
The Bartlett School of Construction and Project Management University College London London UK
Zobrazit více v PubMed
Cordell, D., Drangert, J.-O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009). DOI
Elser, J. & Bennett, E. Phosphorus cycle: a broken biogeochemical cycle. Nature 478, 29–31 (2011). DOI
Scholz, R. W. & Wellmer, F.-W. Although there is no physical short-term scarcity of phosphorus, its resource efficiency should be improved. J. Ind. Ecol. 23, 313–318 (2019). DOI
Ulanowicz, R. E. The dual nature of ecosystem dynamics. Ecol. Model. 220, 1886–1892 (2009). DOI
Carpenter, S. R. & Bennett, E. M. Reconsideration of the planetary boundary for phosphorus. Environ. Res. Lett. 6, 014009 (2011). DOI
Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).
Chen, M. & Graedel, T. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob. Environ. Change 36, 139–152 (2016).
Chowdhury, R. B., Moore, G. A., Weatherley, A. J. & Arora, M. A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales. Resour. Conserv. Recycl. 83, 213–228 (2014). DOI
Reinhard, C. T. et al. Evolution of the global phosphorus cycle. Nature 541, 386–389 (2017). DOI
Yuan, Z. et al. Human perturbation of the global phosphorus cycle: changes and consequences. Environ. Sci. Technol. 52, 2438–2450 (2018). DOI
Smil, V. Phosphorus in the environment: natural flows and human interferences. Annu. Rev. Energy Env. 25, 53–88 (2000). DOI
Liu, X. et al. Intensification of phosphorus cycling in China since the 1600s. Proc. Natl Acad. Sci. USA 113, 2609–2614 (2016). DOI
MacDonald, G. K. et al. Guiding phosphorus stewardship for multiple ecosystem services. Ecosyst. Health Sustain. 2, e01251 (2016). DOI
Sattari, S. Z., van Ittersum, M. K., Giller, K. E., Zhang, F. & Bouwman, A. F. Key role of China and its agriculture in global sustainable phosphorus management. Environ. Res. Lett. 9, 054003 (2014). DOI
Chen, M., Sun, F., Xia, X. & Chen, J. The phosphorus flow in China: a revisit from the perspective of production. Glob. Environ. Res. 19, 19–25 (2015).
Cui, S. et al. Changing urban phosphorus metabolism: evidence from Longyan City, China. Sci. Total Environ. 536, 924–932 (2015). DOI
Li, G.-L., Bai, X., Yu, S., Zhang, H. & Zhu, Y.-G. Urban phosphorus metabolism through food consumption: the case of China. J. Ind. Ecol. 16, 588–599 (2012). DOI
Li, S., Yuan, Z., Bi, J. & Wu, H. Anthropogenic phosphorus flow analysis of Hefei City, China. Sci. Total Environ. 408, 5715–5722 (2010). DOI
Ma, L. et al. Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005. Sci. Total Environ. 434, 51–61 (2012). DOI
Qiao, M., Zheng, Y.-M. & Zhu, Y.-G. Material flow analysis of phosphorus through food consumption in two megacities in northern China. Chemosphere 84, 773–778 (2011). DOI
Yuan, Z., Liu, X., Wu, H., Zhang, L. & Bi, J. Anthropogenic phosphorus flow analysis of Lujiang County, Anhui Province, Central China. Ecol. Model. 222, 1534–1543 (2011). DOI
Yuan, Z., Sun, L., Bi, J., Wu, H. & Zhang, L. Phosphorus flow analysis of the socioeconomic ecosystem of Shucheng County, China. Ecol. Appl. 21, 2822–2832 (2011). DOI
Bi, J., Chen, Q., Zhang, L. & Yuan, Z. Quantifying phosphorus flow pathways through socioeconomic systems at the county level in China. J. Ind. Ecol. 17, 452–460 (2013). DOI
Jiang, S. & Yuan, Z. Phosphorus flow patterns in the Chaohu watershed from 1978 to 2012. Environ. Sci. Technol. 49, 13973–13982 (2015). DOI
Yuan, Z., Shi, J., Wu, H., Zhang, L. & Bi, J. Understanding the anthropogenic phosphorus pathway with substance flow analysis at the city level. J. Environ. Manag. 92, 2021–2028 (2011). DOI
Bai, Z. et al. Changes in phosphorus use and losses in the food chain of China during 1950–2010 and forecasts for 2030. Nutr. Cycl. Agroecosyst. 104, 361–372 (2016). DOI
Li, G. et al. Identifying potential strategies in the key sectors of China’s food chain to implement sustainable phosphorus management: a review. Nutr. Cycl. Agroecosyst. 104, 341–359 (2016). DOI
Ma, D., Hu, S., Chen, D. & Li, Y. Substance flow analysis as a tool for the elucidation of anthropogenic phosphorus metabolism in China. J. Clean. Prod. 29–30, 188–198 (2012). DOI
Ma, D., Hu, S., Chen, D. & Li, Y. The temporal evolution of anthropogenic phosphorus consumption in China and its environmental implications. J. Ind. Ecol. 17, 566–577 (2013). DOI
Wang, F. et al. The phosphorus footprint of China’s food chain: implications for food security, natural resource management, and environmental quality. J. Environ. Qual. 40, 1081–1089 (2011). DOI
Ma, L. et al. Modeling nutrient flows in the food chain of China. J. Environ. Qual. 39, 1279 (2010). DOI
Ulanowicz, R. E. Growth and Development: Ecosystems Phenomenology (Springer, 1986).
Kharrazi, A., Rovenskaya, E. & Fath, B. D. Network structure impacts global commodity trade growth and resilience. PLoS ONE 12, e0171184 (2017). DOI
Goerner, S. J., Lietaer, B. & Ulanowicz, R. E. Quantifying economic sustainability: implications for free-enterprise theory, policy and practice. Ecol. Econ. 69, 76–81 (2009). DOI
Helin, J. & Weikard, H.-P. A model for estimating phosphorus requirements of world food production. Agric. Syst. 176, 102666 (2019). DOI
World Urbanization Prospects: The 2018 Revision; https://population.un.org/wup/country-profiles/ (United Nations, 2018).
Global Food Losses and Food Waste – Extent, Causes and Prevention (FAO, 2011).
Zhang, W. et al. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutr. Cycl. Agroecosyst. 80, 131–144 (2008). DOI
Liu, G. Food Losses and Food Waste in China: A First Estimate OECD Food, Agriculture and Fisheries Papers No. 66 (OECD, 2014).
Roy, R. N., Finck, A., Blair, G. J. & Tandon, H. L. S. Plant Nutrition for Food Security. A Guide for Integrated Nutrient Management (FAO, 2006).
Cieślik, B. & Konieczka, P. A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. J. Clean. Prod. 142, 1728–1740 (2017). DOI
Yokoyama, K. et al. Separation and recovery of phosphorus from steelmaking slags with the aid of a strong magnetic field. ISIJ Int. 47, 1541–1548 (2007). DOI
Action Plan for Zero Increase in Fertilizer Use by 2020 (Ministry of Agriculture, 2015); http://jiuban.moa.gov.cn/zwllm/tzgg/tz/201503/t20150318_4444765.htm
UN Environment Programme, International Resource Panel (2018); http://www.resourcepanel.org
Chen, S. & Chen, B. Urban energy–water nexus: a network perspective. Appl. Energy 184, 905–914 (2016). DOI
Fath, B. D. Quantifying economic and ecological sustainability. Ocean Coast. Manag. 108, 13–19 (2015). DOI
Panyam, V., Huang, H., Davis, K. & Layton, A. Bio-inspired design for robust power grid networks. Appl. Energy 251, 113349 (2019). DOI
Kharrazi, A. & Fath, B. D. Measuring global oil trade dependencies: an application of the point-wise mutual information method. Energy Policy 88, 271–277 (2016). DOI
Ang, B. W. & Zhang, F. Q. A survey of index decomposition analysis in energy and environmental studies. Energy 25, 1149–1176 (2000). DOI
Weik, M. H. in Computer Science and Communications Dictionary (ed. Weik, M. H.) 1074–1074 (Springer, 2001).