Mapping the B-A conformational transition along plasmid DNA
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem
PubMed
15644308
PubMed Central
PMC546179
DOI
10.1093/nar/gni008
PII: 33/1/e5
Knihovny.cz E-zdroje
- MeSH
- A-DNA chemie účinky záření MeSH
- cesium farmakologie MeSH
- cirkulární dichroismus * MeSH
- DNA chemie účinky záření MeSH
- konformace nukleové kyseliny účinky léků MeSH
- plazmidy chemie účinky záření MeSH
- restrikční enzymy metabolismus MeSH
- ultrafialové záření MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- A-DNA MeSH
- cesium MeSH
- DNA MeSH
- restrikční enzymy MeSH
A simple method is presented to monitor conformational isomerizations along genomic DNA. We illustrate properties of the method with the B-A conformational transition induced by ethanol in linearized pUC19 plasmid DNA. At various ethanol concentrations, the DNA was irradiated with ultraviolet light, transferred to a restriction endonuclease buffer and the irradiated DNA was cleaved by 17 restriction endonucleases. The irradiation damaged DNA and the damage blocked the restrictase cleavage. The amount of uncleaved, i.e. damaged, DNA depended on the concentration of ethanol in a characteristic S-shape way typical of the cooperative B-A transition. The transition beginning and midpoint were determined for each restriction endonuclease. These data map the B-A transition along the whole polylinker of pUC19 DNA and six evenly distributed recognition sequences within the rest of the plasmid. The transition midpoints fell within the B-A transition region of the plasmid simultaneously determined by CD spectroscopy. The present method complements the previous methods used to study the B-A transition. It can be employed to analyze multikilobase regions of genomic DNA whose restriction endonuclease cleavage fragments can be separated and quantified on agarose gels.
Zobrazit více v PubMed
Franklin R.E., Gosling R.G. The structure of sodium thymonucleate fibres. I. The influence of water content. Acta Crystallogr. 1953;6:673–677.
Arnott S., Hukins D.W.L., Dover S.O. Optimised parameters for RNA double helices. Biochem. Biophys. Res. Commun. 1972;48:1392–1399. PubMed
Wang J.C. Helical repeat of DNA in solution. Proc. Natl Acad. Sci. USA. 1979;76:200–203. PubMed PMC
Kypr J., Chládková J., Zimulová M., Vorlíčková M. Aqueous trifluorethanol solutions simulate the environment of DNA in the crystalline state. Nucleic Acids Res. 1999;27:3466–3473. PubMed PMC
Mohr S.C., Sokolov N.V.H., He Ch., Setlow P. Binding of small acid-soluble spore proteins from Bacillus subtilis changes the conformation of DNA from B to A. Proc. Natl Acad. Sci. USA. 1991;88:77–81. PubMed PMC
Brahms J., Mommaerts W.F.H.M. A study of conformation of nucleic acids in solution by means of circular dichroism. J. Mol. Biol. 1964;10:73–88. PubMed
Ivanov V.I., Minchenkova L.E., Minyat E.E., Frank-Kamenetskii M.D., Schyolkina A.K. The B-to-A transition of DNA in solution. J. Mol. Biol. 1974;87:817–833. PubMed
Vorlíčková M., Minyat E.E., Kypr J. Cooperative changes in the chiroptical properties of DNA induced by methanol. Biopolymers. 1984;23:1–4. PubMed
Florentiev V.L., Ivanov V.I. RNA polymerase; two-step mechanism with overlapping steps. Nature. 1970;228:519–525. PubMed
Beabealashvily R.Sch., Ivanov V.I., Minchenkova L.E., Savotchkina L.P. RNA polymerase–DNA complexes. I. The study of the conformation of nucleic acids of the growing point of RNA in an RNA polymerase–DNA system. Biochim. Biophys. Acta. 1971;259:35–40. PubMed
Setlow P. DNA in dormant spores of bacillus species is in an A-like conformation. Mol. Microbiol. 1992;6:563–567. PubMed
Zhurkin V.B., Adhya S. CRP-DNA complexes: inducing the A-like form in the binding sites with an extended central spacer. J. Mol. Biol. 1995;245:228–240. PubMed
Eom S.H., Wang J., Steitz T.A. Structure of Taq polymerase with DNA at the polymerase active site. Nature. 1996;382:278–281. PubMed
Jones S., Heyningen P., Berman H.M., Thornton J.M. Protein–DNA interactions: a structural analysis. J. Mol. Biol. 1999;287:877–896. PubMed
Lu X.-J., Shakked Z., Olson W.K. A-form conformational motifs in ligand-bound DNA structures. J. Mol. Biol. 2000;300:819–840. PubMed
Minyat E.E., Ivanov V.I., Kritzyn A.M., Minchenkova L.E., Schyolkina A.K. Spermine and spermidine-induced B-to-A transition of DNA in solution. J. Mol. Biol. 1978;128:397–409. PubMed
Xu Q., Shoemaker R.K., Braunlin W.H. Induction of B-A transitions of deoxyoligonucleotides by multivalent cations in dilute aqueous solution. Biophys. J. 1993;65:1039–1049. PubMed PMC
Robinson H., Wang A.H.-J. Neomycin, spermine and hexaamminecobalt (III) share common structural motifs in converting B- to A-DNA. Nucleic Acids Res. 1996;4:676–682. PubMed PMC
Trantírek L., Štefl R., Vorlíčková M., Koča J., Sklenář V., Kypr J. An A-type double helix of DNA having B-type puckering of the deoxyribose rings. J. Mol. Biol. 2000;297:907–922. PubMed
Štefl R., Trantírek L., Vorlíčková M., Koča J., Sklenář V., Kypr J. A-like guanine-guanine stacking in the aqueous DNA duplex of d(GGGGCCCC) J. Mol. Biol. 2001;307:513–524. PubMed
Kursar T., Holzwarth G. Backbone conformational change in the A-B transition of deoxyribonucleic acid. Biochemistry. 1976;15:3352–3357. PubMed
Nishimura Y., Torigoe C., Tsuboi M. An A-form poly(dG) poly(dC) in H2O solution. Biopolymers. 1985;24:1841–1844. PubMed
Benevides J.M., Wang A.H.-J., Rich A., Kyogoku Y., van der Marel G.A., van Boom J.H., Thomas G.J., Jr Raman spectra of single crystals of r(GCG)d(CGC) and d(CCCCGGGG) as models for A DNA, their structure transitions in aqueous solution, and comparison with double-helical poly(dG) poly(dC) Biochemistry. 1986;25:41–50. PubMed
Becker M.M., Wang Z. B-A transitions within a 5S ribosomal RNA gene are highly sequence-specific. J. Biol. Chem. 1989;264:4163–4167. PubMed
Nejedlý K., Sýkorová E., Diekmann S., Paleček E. Analysis of a curved DNA constructed from alternating dA(n):dT(n)-tracts in linear and supercoiled form by high resolution chemical probing. Biophys. Chem. 1998;73:205–216. PubMed
Pospíšilová Š., Kypr J. UV light-induced duplex-to-duplex crosslinking of DNA molecules in aqueous ethanol solutions. Photochem. Photobiol. 1998;67:386–390. PubMed
Kypr J., Sklenář V., Vorlíčková M. Phosphorus NMR spectra of natural DNA fragments in the course of the B-to-A conformational transition. Biopolymers. 1986;25:1803–1812. PubMed
Pospíšilová Š., Kypr J. UV light-induced crosslinking of the complementary strands of plasmid pUC19 DNA restriction fragments. Photochem. Photobiol. 1997;65:945–948. PubMed
Nejedlý K., Kittner R., Pospíšilová Š., Kypr J. Crosslinking of the complementary strands of DNA by UV light: dependence on the oligonucleotide composition of the UV irradiated DNA. Biochim. Biophys. Acta. 2001;1517:365–375. PubMed
Nejedlý K., Kittner R., Kypr J. Genomic DNA regions whose complementary strands are prone to UV light-induced crosslinking. Arch. Biochem. Biophys. 2001;388:216–224. PubMed
Kejnovský E., Nejedlý K., Kypr J. Factors influencing resistance of UV-irradiated DNA to the restriction endonuclease cleavage. Int. J. Biol. Macromol. 2004;34:213–222. PubMed
Pilet J., Blicharski J., Brahms J. Conformations and structural transitions in polydeoxynucleotides. Biochemistry. 1975;14:1869–1876. PubMed
Ivanov V.I., Krylov D.Y., Minyat E.E. Three-state diagram for DNA. J. Biomol. Struct. Dyn. 1985;3:43–55. PubMed
Becker M.M., Wang J.C. Use of light for footprinting DNA in vivo. Nature. 1984;309:682–687. PubMed
Wang Z., Becker M.M. Selective visualization of gene structure with ultraviolet light. Proc. Natl Acad. Sci. USA. 1988;85:654–658. PubMed PMC
Becker M.M., Wang Z., Grossmann G., Becherer K.A. Genomic footprinting in mammalian cells with ultraviolet light. Proc. Natl Acad. Sci. USA. 1989;86:5315–5319. PubMed PMC
Lyamichev V.I., Frank-Kamenetskii M.D., Soyfer V.N. Protection against UV-induced pyrimidine dimerization in DNA triplex formation. Nature. 1991;344:568–570. PubMed
Lyamichev V.I., Voloshin O.N., Frank-Kamenetskii M.D., Soyfer V.N. Photofootprinting of DNA triplexes. Nucleic Acids Res. 1991;19:1633–1638. PubMed PMC
Lyamichev V. Unusual conformation of (dA)n (dT)n-tracts as revealed by cyclobutane thymine–thymine dimer formation. Nucleic Acids Res. 1991;19:4491–4496. PubMed PMC
Arnott S., Hukins D.W.L. Optimised parameters for A-DNA and B-DNA. Biochem. Biophys. Res. Commun. 1973;47:1504–1509. PubMed
Timsit Y. DNA structure and polymerase fidelity. J. Mol. Biol. 1999;293:835–853. PubMed
Zimmerman S.B., Pheiffer B.H. A direct demonstration that the ethanol-induced transition of DNA is between the A and B forms: an X-ray diffraction study. J. Mol. Biol. 1979;135:1023–1027. PubMed
Nishimura Y., Torigoe Ch., Tsuboi M. Salt induced B-A transition of poly(dG) poly(dC) and the stabilization of A-form by its methylation. Nucleic Acids Res. 1986;14:2737–2749. PubMed PMC
Gale J.M., Nissen K.A., Smerdon M.J. UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases. Proc. Natl Acad. Sci. USA. 1987;84:6644–6648. PubMed PMC
Tang M., Htun H., Cheng Y., Dahlberg J.E. Suppression of cyclobutane and mean value of 6–4 dipyrimidines formation in triple-stranded H-DNA. Biochemistry. 1991;30:7021–7026. PubMed
Kuhnlein U., Tsang S.S., Edwards J. Cooperative structural transition of PM2 DNA at high ionic strength and its dependence on DNA damages. Nature. 1980;287:363–364. PubMed
Zacharias W., Larson J.E., Kilpatrick M.W., Wells R.D. HhaI methylase and restriction endonuclease as probes for B to Z DNA conformational changes in d(GCGC) sequences. Nucleic Acids Res. 1984;12:7677–7692. PubMed PMC