Cross-continental phylogeography of two Holarctic Nymphalid butterflies, Boloria eunomia and Boloria selene
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30913279
PubMed Central
PMC6435151
DOI
10.1371/journal.pone.0214483
PII: PONE-D-18-34700
Knihovny.cz E-zdroje
- MeSH
- argininkinasa genetika MeSH
- fylogeografie * MeSH
- genetická variace MeSH
- motýli * enzymologie genetika MeSH
- respirační komplex IV genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- argininkinasa MeSH
- respirační komplex IV MeSH
Pleistocene glaciations had significant effects on the distribution and evolution of species inhabiting the Holarctic region. Phylogeographic studies concerning the entire region are still rare. Here, we compared global phylogeographic patterns of one boreo-montane and one boreo-temperate butterflies with largely overlapping distribution ranges across the Northern Hemisphere, but with different levels of range fragmentation and food specialization. We reconstructed the global phylogeographic history of the boreo-montane specialist Boloria eunomia (n = 223) and of the boreo-temperate generalist Boloria selene (n = 106) based on mitochondrial and nuclear DNA markers, and with species distribution modelling (SDM). According to the genetic structures obtained, both species show a Siberian origin and considerable split among populations from Nearctic and Palaearctic regions. According to SDMs and molecular data, both butterflies could inhabit vast areas during the moderate glacials. In the case of B. selene, high haplotype diversity and low geographic structure suggest long-lasting interconnected gene flow among populations. A stronger geographic structuring between populations was identified in the specialist B. eunomia, presumably due to the less widespread, heterogeneously distributed food resources, associated with cooler and more humid climatic conditions. Populations of both species show opposite patterns across major parts of North America and in the case of B. eunomia also across Asia. Our data underline the relevance to cover entire distribution ranges to reconstruct the correct phylogeographic history of species.
IMBE Aix Marseille Université CNRS IRD Avignon Université Marseille France
University of South Bohemia Faculty of Sciences Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Avise JC. Phylogeography—the history and formation of species. Cambridge, Massachusetts, London: Harvard University Press; 2000.
Hewitt GM. The structure of biodiversity—insights from molecular phylogeography. Front Zool. 2004;1:4 10.1186/1742-9994-1-4 PubMed DOI PMC
Hewitt GM. Post-glacial re-colonization of European biota. Biol J Linn Soc Lond. 1999;68:87–112.
Seddon JM, Santucci F, Reeve NJ, Hewitt GM. DNA footprints of European hedgehogs, PubMed
Varga Z, Schmitt T. Types of areal and oreotundral disjunctions in the western Palearctic. Biol J Linn Soc Lond. 2008;93:415–430.
Ronikier M, Schneeweiss GM, Schoönswetter P. The extreme disjunction between Beringia and Europe in PubMed DOI
Schmitt T, Varga Z. Extra-Mediterranean refugia: The rule and not the exception? Front Zool. 2012;9:22 10.1186/1742-9994-9-22 PubMed DOI PMC
de Lattin G. Grundriss der Zoogeographie. Fischer, Stuttgart: Fischer; 1967.
Schmitt T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front Zool. 2007;4:11 10.1186/1742-9994-4-11 PubMed DOI PMC
Després L, Loriot S, Gaudeul M. Geographic pattern of genetic variation in the European globeflower PubMed
Kramp K, Huck S, Niketić M, Tomović G, Schmitt T. Multiple glacial refugia and complex postglacial range shifts of the obligatory woodland plant PubMed
Drees C, Husemann M, Homburg K, Brandt P, Dieker P, Habel JC, et al. Molecular analyses and species distribution models indicate cryptic northern mountain refugia for a forest-dwelling ground beetle. J Biogeogr. 2016;43:2223–2236.
Habel JCH, Schmitt T, Meyer M, Finger A, Rödder D, Assmann T, et al. Biogeography meets conservation: the genetic structure of the endangered lycaenid butterfly
Kramp K, Cizek O, Madeira PM, Ramos AA, Konvicka M, Castilho R, et al. Genetic implications of phylogeographical patterns in the conservation of the boreal wetland butterfly
Nève G, Barascud B, Hughes R, Aubert J, Descimon H, Lebrun P, et al. Dispersal, colonization power and metapopulation structure in the vulnerable butterfly
Binney HA, Willis KJ, Edwards ME, Bhagwat SA, Anderson PM, Andreev AA, et al. The distribution of late-Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil database. Quat Sci Rev. 2009;28:2445–2464.
Ehlers J, Gibbard PL. The extent and chronology of Cenozoic global glaciation. Quat Int 2007;164:6–20.
Tarasov PE, Volkova VS, Webb T III, Guiot J, Andreev AA, Bezusko LG, et al. Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. J Biogeogr. 2000;27:609–620.
Abbott RJ, Brochmann C. History and evolution of the Arctic flora: in the footsteps of Eric Hultén. Mol Ecol. 2003;12:299–313. PubMed
Goetcheus VG, Birks HH. Full-glacial upland tundra vegetation preserved under tephra in the Beringian National Park, Seward Peninsula, Alaska. Quat Sci Rev. 2001;20:135–147.
Alsos IG, Engelskjøn T, Gielly L, Taberlet P, Brochmann C. Impact of ice ages on circumpolar molecular diversity: insights from an ecological key species. Mol Ecol. 2005;14:2739–2753. 10.1111/j.1365-294X.2005.02621.x PubMed DOI
Eidesen PB, Alsos IG, Popp M, Stensrud O, Suda J, Brochmann C. Nuclear vs. plastid data: complex Pleistocene history of a circumpolar key species. Mol Ecol. 2007;16:3902–3925. 10.1111/j.1365-294X.2007.03425.x PubMed DOI
Mardulyn P, Mikhailov Y, Pasteels JM. Testing phylogeographic hypotheses in a Euro-Siberian cold-adapted leaf beetle with coalescent simulations. Evolution. 2009;63:2717–2729. 10.1111/j.1558-5646.2009.00755.x PubMed DOI
Nève G, Barascud B, Descimon H, Baguette M. Gene flow rise with habitat fragmentation in the bog fritillary butterfly (Lepidoptera: Nymphalidae). BMC Evol Biol. 2008;8:84 10.1186/1471-2148-8-84 PubMed DOI PMC
Nève G, Pavlíčko A, Konvička M. Loss of genetic diversity through spontaneous colonization in the bog fritillary butterfly,
Tuzov VK, Bozano GC. Guide to the butterflies of the Palearctic region Nymphalidae, Part II, Tribe Argynnini:
Petersen B. Some trends of speciation in the cold-adapted Holarctic fauna. Zoologiska Bidrag från Uppsala. 1956;30:233–314.
Jakšić P, Van Swaay C, Đurić M.
Kudrna O, Pennerstorfer J, Lux K. Distribution atlas of European butterflies and skippers 3
Schtickzelle N, Turlure C, Baguette M. Grazing management impacts on the viability of the threatened bog fritillary butterfly
Klimczuk P, Sielezniew M. Unexpected differences in butterfly diversity between two peat bogs in the same area. Pol J Entomol. 2017; 86:251–273.
Tolman T, Lewington R. Collins butterfly guide: the most complete field guide to the butterflies of Britain and Europe. 3
Chernov YuI, Tatarinov AG. Butterflies (Lepidoptera, Rhopalocera) in the Arctic fauna. Entomol Rev. 2006;86(7):760–786.
Beneš J, Konvika M, Dvořák J, Fric Z, Havelda Z, Pavlíčko A, et al. Butterflies of the Czech Republic: Distribution and Conservation I, II. Prague: SOM; 2002.
Layberry RA, Hall PW, Lafontaine J. The Butterflies of Canada. Toronto: University of Toronto Press; 1998.
Tshikolovets VV. Butterflies of Europe & the Mediterranean area. Kiev: Tshikolovets; 2011.
Wahlberg N, Wheat CW. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Syst Biol. 2008;57:231–242. 10.1080/10635150802033006 PubMed DOI
Monteiro A, Pierce NE. Phylogeny of PubMed DOI
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. 10.1093/bioinformatics/bts199 PubMed DOI PMC
Clement M, Posada D, Crandall K. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–1660. PubMed
Leigh JW, Bryant D. PopART: full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6:1110–1116.
Dellicour S, Mardulyn P. SPADS 1.0: a toolbox to perform spatial analyses on DNA sequence data sets. Mol Ecol Resour. 2014;14:647–651. 10.1111/1755-0998.12200 PubMed DOI
Excoffier L, Laval G, Schneider S. Arlequin vers. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online. 2005;1:47–50. PubMed PMC
Excoffier L, Lischer HEL. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–567. 10.1111/j.1755-0998.2010.02847.x PubMed DOI
Lanfear R, Calcott B, Ho Sy, Guindon S. Partition-finder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol, 2012;29:1695–1701. 10.1093/molbev/mss020 PubMed DOI
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969–1973. 10.1093/molbev/mss075 PubMed DOI PMC
Wahlberg N. That awkward age for butterflies: insights from the age of the butterfly subfamily Nymphalinae. Syst Biol. 2006;55:703–714. 10.1080/10635150600913235 PubMed DOI
Wahlberg N, Wheat CW, Peña C. Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths). PLoS One. 2013; 8(11):80875. PubMed PMC
Simonsen TJ, Wahlberg N, Warren AD, Sperling FAH. The evolutionary history of
Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214 10.1186/1471-2148-7-214 PubMed DOI PMC
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans: IEEE; 2010.
Tshikolovets VV, Bidzilya VO, Golovushkin MI. The butterflies of Transbaikal Siberia. Kiev, Pardubice: Tshikolovets; 2002.
Tshikolovets VV, Yakovlev RV, Bálint Z. The butterflies of Mongolia. Kiev, Pardubice: Tshikolovets; 2009.
Tshikolovets VV, Yakovlev RV, Kosterin OE. The butterflies of Altai, Sayans and Tuva (S.-W. Siberia). Kiev, Pardubice: Tshikolovets; 2009.
Tshikolovets VV, Nekrutenko YP. The butterflies of Caucasus and Transcaucasia (Armenia, Azerbaijan, Georgia and Russia). Kiev, Pardubice: Tshikolovets; 2012.
Tshikolovets VV, Kosterin O, Gorbunov P, Yakovlev R. The Butterflies of Kazakhstan. Kiev, Pardubice: Tshikolovets; 2016.
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25:1965–1978.
Phillips SJ, Dudík M, Schapire RE. [Internet] Maxent software for modeling species niches and distributions (Version 3.4.1). [cited 2018 Nov 29]. http://biodiversityinformatics.amnh.org/open_source/maxent/.
Hijmans RJ, Phillips S, Leathwick J, Elith J. dismo: Species Distribution Modeling. R package version 1.1–4. 2017. https://cran.r-project.org/web/packages/dismo/dismo.pdf
Hijmans RJ. raster: Geographic Data Analysis and Modeling. R package version 2.8–4. 2018. https://cran.r-project.org/web/packages/raster/raster.pdf
Fourcade Y, Engler JO, Rodder D, Secondi J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS One. 2014;9:e97122 10.1371/journal.pone.0097122 PubMed DOI PMC
QGIS Development Team. [Internet] QGIS Geographic information system. Open source geospatial foundation project. [cited 2018 Nov 29]. http://qgis.osgeo.org.
Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, et al. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for maxent eco- logical niche models. Methods Ecol Evol. 2014;5:1198–1205.
Fu Y-X. Statistical tests of neutrality of mutations against population growth, hitch- hiking, and background selection. Genetics. 1997;147:915–925. PubMed PMC
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–595. PubMed PMC
Ehlers J, Gibbard PL, Hughes PD. Quaternary glaciations—extent and chronology. Amsterdam: Elsevier; 2011.
Todisco V, Gratton P, Cesaroni D, Sbordoni V. Phylogeography of
Kleckova I, Cesanek M, Fric Z, Pellissier L. Diversification of the cold-adapted butterfly genus PubMed DOI
Peña C, Witthauer H, Klečková I, Fric Z, Wahlberg N. Adaptive radiations in butterflies: evolutionary history of the genus
Kodandaramaiah U, Wahlberg N. Phylogeny and biogeography of
Kodandaramaiah U, Braby MF, Grund R, Müller CJ, Wahlberg N. Phylogenetic relationships, biogeography and diversification of Coenonymphina butterflies (Nymphalidae: Satyrinae): intercontinental dispersal of a southern Gondwanan group?. Syst Entomol. 2018;43:798–809.
Varga Z. Das Prinzip der areal-analytischen Methode in der Zoogeographie und die Faunenelemente-Einteilung der europaäischen Tagschmetterlinge (Lepidoptera: Diurna). Acta Biologica Debrecina. 1977;14:223–285.
Sanmartin I, Enghoff H, Ronquist F. Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biol J Linn Soc Lond. 2001;73:345–390.
Mullen SP. Wing pattern evolution and the origins of mimicry among North American admiral butterflies (Nymphalidae: Limenitis). Mol Phylogenet Evol. 2006;39:747–758. 10.1016/j.ympev.2006.01.021 PubMed DOI
Kodandaramaiah U, Wahlberg N. Out-of-Africa origin and dispersal-mediated diversification of the butterfly genus PubMed DOI
Peña C, Nylin S, Freitas AVL, Wahlberg N. Biogeographic history of the butterfly subtribe Euptychiina (Lepidoptera, Nymphalidae, Satyrinae). Zool Scr. 2010;39:243–258.
Peña C, Nylin S, Wahlberg N. The radiation of Satyrini butterflies (Nymphalidae: Satyrinae): a challenge for phylogenetic methods. Zool J Linn Soc. 2011;161:64–87.
Lafontaine JD, Wood DM. A zoogeographic analysis of the Noctuidae (Lepidoptera) of Beringia, and some inferences about past Beringian habitat. Memoirs of the Entomological Society of Canada. 1988;144:109–123.
Galbreath KE, Cook JA. Genetic consequences of Pleistocene glaciations for the tundra vole (Microtus oeconomus) in Beringia. Mol Ecol. 2004;13:135–148. PubMed
Hope AG, Takebayashi N, Galbreath KE, Talbot SL, Cook JA, Riddle B. Temporal, spatial and ecological dynamics of speciation among amphi‐Beringian small mammals. J Biogeogr. 2013;40:415–429.
Kohli BA, Fedorov VB, Waltari E, Cook JA. Phylogeography of a Holarctic rodent (
Dyke AS. (2004) An outline of North American Deglaciation with emphasis on central and northern Canada In: Ehlers J, Gibbard PL, editors. Quaternary Glaciations—Extent and Chronology, Part II. Amsterdam: Elsevier; 2004. p. 373–424.
Beatty GE, Provan JIM. Refugial persistence and postglacial recolonization of North America by the cold-tolerant herbaceous plant PubMed DOI
Godbout J, Jaramillo-Correa JP, Beaulieu J, Bosquet J. A mitochondrial DNA minisatellite reveals the postglacial history of jack pine ( PubMed DOI
Jackson ST, Webb RS, Anderson KH, Overpeck JT, Webb T III, Williams JW, et al. Vegetation and environment in Eastern North America during the Last Glacial Maximum. Quat Sci Rev. 2000;19:489–508.
Jaramillo‐Correa JP, Beaulieu J, Bousquet J. Variation in mitochondrial DNA reveals multiple distant glacial refugia in black spruce ( PubMed DOI
Latutrie M, Bergeron Y, Tremblay F. Fine-scale assessment of genetic diversity of trembling aspen in northwestern North America. BMC Evol Biol. 2016;16:231 10.1186/s12862-016-0810-1 PubMed DOI PMC
Lee-Yaw JA, Irwin JT, Green DM. Postglacial range expansion from northern refugia by the wood frog, PubMed DOI
Li P, Li M, Shi Y, Zhao Y, Wan Y, Fu C, et al. Phylogeography of North American herbaceous PubMed DOI
Rowe KC, Heske EJ, Brown PW, Paige KN. Surviving the ice: Northern refugia and postglacial recolonization. Proc Natl Acad Sci U S A. 2004;101:10355–10359. 10.1073/pnas.0401338101 PubMed DOI PMC
Lait LA, Hebert P. Phylogeographic structure in three North American tent caterpillar species (Lepidoptera: Lasiocampidae): PubMed DOI PMC
Yakovlev RV, Shapoval NA, Kuftina GN, Kulak AV, Kovalev SV. Notes on the molecular taxonomy of the
Forister ML, Fordyce JA, Shapiro AM. Geological barriers and restricted gene flow in the holarctic skipper PubMed DOI
Gratton P, Konopinski MK, Sbordoni V. Pleistocene evolutionary history of the Clouded Apollo ( PubMed DOI
Wahlberg N, Saccheri I. The effects of Pleistocene glaciations on the phylogeography of
Bartonova A, Konvicka M, Korb S, Kramp K, Schmitt T, Faltynek Fric Z. (2018) Range dynamics of Palaearctic steppe species under glacial cycles: the phylogeography of
Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell JA, Funder S, et al. Late Quaternary ice sheet history of Eurasia. Quat Sci Rev. 2004;23:1229–1271.
Mägdefrau K. Paläobiologie der Pflanzen. Jena: Verlag Gustav Fischer; 1953.
Brunhoff C, Yoccoz NG, Ims RA, Jaarola M. Glacial survival or late glacial colonization? Phylogeography of the root vole (
Mikkola K, Lafontaine JD, Kononenko VS. Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Beringian refuge. Entomol Fenn. 1991;2:157–173.
Quinzin MC, Normand S, Dellicour S, Svenning J-C, Mardulyn P. Glacial survival of trophically linked boreal species in northern Europe. Proc R Soc Lond B Biol Sci. 2017;284:20162799. PubMed PMC
Krzywicki M. Fauna Papilionoidea i Hesperioidea (Lepidoptera) Puszczy Białowieskiej. Annales Zoologici, Polska Akademia Nauk. 1967;25:1–213.
Sielezniew M, Ponikwicka-Tyszko D, Ratkiewicz M, Dziekanska I, Kostro-Amnroziak A, Rutkowski R. Divergent patterns in the mitochondrial and nuclear diversity of the specialized butterfly
Ratkiewicz M, Jaroszewicz B. Allopatric origins of sympatric forms: the skippers
Sielezniew M, Kostro-Ambroziak A, Klimczuk P, Deoniziak K, Pałka K, Nowicki P. Habitat-related differences in the adult longevity of two ecotypes of a specialized butterfly. J Zool. 2018;1–12.
Ehlers J, Astakhov V, Gibbard PL, Mangerud J, Svendsen JI. Middle Pleistocene in Eurasia In: Elias S, Mock C, editors. Encyclopedia of Quaternary Science. 2
Schmitt T. Biogeographical and evolutionary importance of the European high mountain systems. Front Zool. 2009;6:9 10.1186/1742-9994-6-9 PubMed DOI PMC
Nève G, Barascud B, Windig JJ. Population biology of
Dincă V, Runquist M, Nilsson M, Vila R. Dispersal, fragmentation, and isolation shape the phylogeography of the European lineages of
Horreo JL, Pelaez ML, Suárez T, Breedveld MC, Benoit H, Yann S-G, et al. Phylogeography, evolutionary history and effects of glaciations in a species (
Trettin J, Agrawal S, Heinze J. Phylogeography of social polymorphism in a boreo-montane ant. BMC Evol Biol. 2016;16:137 10.1186/s12862-016-0711-3 PubMed DOI PMC
Vences M, Hauswaldt JS, Steinfartz S, Rupp O, Goesmann A, Künzel S, et al. Radically different phylogeographies and patterns of genetic variation in two European brown frogs, genus PubMed DOI
Todisco V, Gratton P, Zakharov EV, Wheat CW, Sbordoni V, Sperling FAH. Mitochondrial phylogeography of the Holarctic
Hegna RH, Galarza JA, Mappes J. Global phylogeography and geographical variation in warning coloration of the wood tiger moth (
Kodandaramaiah U, Weingartner E, Janz N, Dalén L, Nylin S. Population structure in relation to host-plant ecology and PubMed DOI
Kodandaramaiah U, Konvicka M, Tammaru T, Wahlberg N, Gotthard K. Phylogeography of the threatened butterfly, the woodland brown
Vandewoestijne S, Baguette M, Brakefield PM, Saccheri IJ. Phylogeography of PubMed DOI
Konvicka M, Zimmermann K, Klimova M, Hula V, Fric Z. Inverse link between density and dispersal distance in butterflies: field evidence from six co-occurring species. Popul Ecol. 2012;54:91–101.
Mennechez G, Schtickzelle N, Baguette M. Metapopulation dynamics of the bog fritillary butterfly: comparison of demographic parameters and dispersal between a continuous and a highly fragmented landscape. Lands Ecol. 2003;18:279–291.
Habel JC, Schmitt T. The burden of genetic diversity. Biol Conserv. 2012;147:270–274.