Anaerobic peroxisomes in Entamoeba histolytica metabolize myo-inositol

. 2021 Nov ; 17 (11) : e1010041. [epub] 20211115

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34780573
Odkazy

PubMed 34780573
PubMed Central PMC8629394
DOI 10.1371/journal.ppat.1010041
PII: PPATHOGENS-D-21-01231
Knihovny.cz E-zdroje

Entamoeba histolytica is believed to be devoid of peroxisomes, like most anaerobic protists. In this work, we provided the first evidence that peroxisomes are present in E. histolytica, although only seven proteins responsible for peroxisome biogenesis (peroxins) were identified (Pex1, Pex6, Pex5, Pex11, Pex14, Pex16, and Pex19). Targeting matrix proteins to peroxisomes is reduced to the PTS1-dependent pathway mediated via the soluble Pex5 receptor, while the PTS2 receptor Pex7 is absent. Immunofluorescence microscopy showed that peroxisomal markers (Pex5, Pex14, Pex16, Pex19) are present in vesicles distinct from mitosomes, the endoplasmic reticulum, and the endosome/phagosome system, except Pex11, which has dual localization in peroxisomes and mitosomes. Immunoelectron microscopy revealed that Pex14 localized to vesicles of approximately 90-100 nm in diameter. Proteomic analyses of affinity-purified peroxisomes and in silico PTS1 predictions provided datasets of 655 and 56 peroxisomal candidates, respectively; however, only six proteins were shared by both datasets, including myo-inositol dehydrogenase (myo-IDH). Peroxisomal NAD-dependent myo-IDH appeared to be a dimeric enzyme with high affinity to myo-inositol (Km 0.044 mM) and can utilize also scyllo-inositol, D-glucose and D-xylose as substrates. Phylogenetic analyses revealed that orthologs of myo-IDH with PTS1 are present in E. dispar, E. nutalli and E. moshkovskii but not in E. invadens, and form a monophyletic clade of mostly peroxisomal orthologs with free-living Mastigamoeba balamuthi and Pelomyxa schiedti. The presence of peroxisomes in E. histolytica and other archamoebae breaks the paradigm of peroxisome absence in anaerobes and provides a new potential target for the development of antiparasitic drugs.

Zobrazit více v PubMed

Wang H, Naghavi M, Allen C, Barber RM, Carter A, Casey DC, et al.. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388: 1459–1544. doi: 10.1016/S0140-6736(16)31012-1 PubMed DOI PMC

Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al.. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380: 2095–2128. doi: 10.1016/S0140-6736(12)61728-0 PubMed DOI PMC

Cui Z, Li J, Chen Y, Zhang L. Molecular epidemiology, evolution, and phylogeny of Entamoeba spp. Infect Genet Evol. 2019;75: 104018. doi: 10.1016/j.meegid.2019.104018 PubMed DOI

Uddin MJ, Leslie JL, Petri WA. Host protective mechanisms to intestinal amebiasis. Trends Parasitol. 2021;37: 165–175. doi: 10.1016/j.pt.2020.09.015 PubMed DOI PMC

Žárský V, Klimeš V, Pačes J, Vlček Č, Hradilová M, Beneš V, et al.. The Mastigamoeba balamuthi genome and the nature of the free-living ancestor of Entamoeba. Mol Biol Evol. 2021;38: 2240–2259. doi: 10.1093/molbev/msab020 PubMed DOI PMC

Makiuchi T, Nozaki T. Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie. 2014;100: 3–17. doi: 10.1016/j.biochi.2013.11.018 PubMed DOI

Tovar J, Fischer A, Clark CG. The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol. 1999;32: 1013–1021. doi: 10.1046/j.1365-2958.1999.01414.x PubMed DOI

Ghosh S, Field J, Rogers R, Hickman M, Samuelson J. The Entamoeba histolyticamitochondrion-derived organelle (crypton) contains double-stranded DNA and appears to be bound by a double membrane. Infect Immun. 2000;68: 4319–4322. doi: 10.1128/IAI.68.7.4319-4322.2000 PubMed DOI PMC

Mi-ichi F, Yousuf MA, Nakada-Tsukui K, Nozaki T. Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A. 2009;106: 21731–21736. doi: 10.1073/pnas.0907106106 PubMed DOI PMC

Mi-ichi F, Makiuchi T, Furukawa A, Sato D, Nozaki T. Sulfate activation in mitosomes plays an important role in the proliferation of Entamoeba histolytica. PLoS Negl Trop Dis. 2011;5: e1263. doi: 10.1371/journal.pntd.0001263 PubMed DOI PMC

Pineda E, Vázquez C, Encalada R, Nozaki T, Sato E, Hanadate Y, et al.. Roles of acetyl-CoA synthetase (ADP-forming) and acetate kinase (PPi-forming) in ATP and PPi supply in Entamoeba histolytica. Biochim Biophys Acta—Gen Subj. 2016;1860: 1163–1172. doi: 10.1016/j.bbagen.2016.02.010 PubMed DOI

Cavalier-Smith T. The origin of cells: a symbiosis between genes, catalysts, and membranes. Cold Spring Harb Symp Quant Biol. 1987;52: 805–824. doi: 10.1101/sqb.1987.052.01.089 PubMed DOI

Mazzuco A, Benchimol M, De Souza W. Endoplasmic reticulum and Golgi-like elements in Entamoeba. Micron. 1997;28: 241–247. doi: 10.1016/s0968-4328(97)00024-3 PubMed DOI

Teixeira JE, Huston CD. Evidence of a continuous endoplasmic reticulum in the protozoan parasite Entamoeba histolytica. Eukaryot Cell. 2008;7: 1222–1226. doi: 10.1128/EC.00007-08 PubMed DOI PMC

Ghosh SK, Field J, Frisardi M, Rosenthal B, Mai Z, Rogers R, et al.. Chitinase secretion by encysting Entamoeba invadens and transfected Entamoeba histolytica trophozoites: localization of secretory vesicles, endoplasmic reticulum, and Golgi apparatus. Infect Immun. 1999;67: 3073–3081. doi: 10.1128/IAI.67.6.3073-3081.1999 PubMed DOI PMC

Barlow LD, Nývltová E, Aguilar M, Tachezy J, Dacks JB. A sophisticated, differentiated Golgi in the ancestor of eukaryotes. BMC Biol. 2018;16: 27. doi: 10.1186/s12915-018-0492-9 PubMed DOI PMC

Gabaldón T. Peroxisome diversity and evolution. Philos Trans R Soc B Biol Sci. 2010;365: 765–773. doi: 10.1098/rstb.2009.0240 PubMed DOI PMC

Pieuchot L, Jedd G. Peroxisome assembly and functional diversity in eukaryotic microorganisms. Annu Rev Microbiol. 2012;66: 237–263. doi: 10.1146/annurev-micro-092611-150126 PubMed DOI

Allmann S, Bringaud F. Glycosomes: A comprehensive view of their metabolic roles in T. brucei. Int J Biochem Cell Biol. 2017;85: 85–90. doi: 10.1016/j.biocel.2017.01.015 PubMed DOI

van der Klei IJ, Veenhuis M. The Versatility of peroxisome function in filamentous fungi. Subcellular Biochemistry. Springer; New York; 2013. pp. 135–152. doi: 10.1007/978-94-007-6889-5_8 PubMed DOI

Walter T, Erdmann R. Current advances in protein import into peroxisomes. Protein J. 2019;38: 351–362. doi: 10.1007/s10930-019-09835-6 PubMed DOI

Mast FD, Rachubinski RA, Aitchison JD. Peroxisome prognostications: Exploring the birth, life, and death of an organelle. J Cell Biol. 2020;219: 1–13. doi: 10.1083/jcb.201912100 PubMed DOI PMC

Speijer D. Evolution of peroxisomes illustrates symbiogenesis. BioEssays. 2017;39: 1–8. doi: 10.1002/bies.201700050 PubMed DOI

Fransen M, Lismont C, Walton P. The peroxisome-mitochondria connection: How and why? Int J Mol Sci. 2017;18. doi: 10.3390/ijms18061126 PubMed DOI PMC

Sugiura A, Mattie S, Prudent J, Mcbride HM. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature. 2017;542: 251–254. doi: 10.1038/nature21375 PubMed DOI

Gabaldón T, Ginger ML, Michels PAM. Peroxisomes in parasitic protists. Mol Biochem Parasitol. 2016;209: 35–45. doi: 10.1016/j.molbiopara.2016.02.005 PubMed DOI

Le T, Žárský V, Nývltová E, Rada P, Harant K, Vancová M, et al.. Anaerobic peroxisomes in Mastigamoeba balamuthi. Proc Natl Acad Sci U S A. 2020;117: 2065–2075. doi: 10.1073/pnas.1909755117 PubMed DOI PMC

Záhonová K, Treitli SC, Le T, Škodová-Sveráková I, Hanousková P, Čepička I, et al.. Anaerobic derivates of mitochondria and peroxisomes in the free-living amoeba Pelomyxa schiedti revealed by single-cell genomics. bioRxiv. 2021; 2021.05.20.444135. doi: 10.1101/2021.05.20.444135 PubMed DOI PMC

Neufeld C, Filipp F V., Simon B, Neuhaus A, Schüller, David, et al.. Structural basis for competitive interactions of Pex14 with the import receptors Pex5 and Pex19. EMBO J. 2009;28: 745–754. doi: 10.1038/emboj.2009.7 PubMed DOI PMC

Schmidt F, Treiber N, Zocher G, Bjelic S, Steinmetz MO, Kalbacher H, et al.. Insights into peroxisome function from the structure of PEX3 in complex with a soluble fragment of PEX19. J Biol Chem. 2010;285: 25410–7. doi: 10.1074/jbc.M110.138503 PubMed DOI PMC

Sato Y, Shibata H, Nakatsu T, Nakano H, Kashiwayama Y, Imanaka T, et al.. Structural basis for docking of peroxisomal membrane protein carrier Pex19p onto its receptor Pex3p. EMBO J. 2010;29: 4083–93. doi: 10.1038/emboj.2010.293 PubMed DOI PMC

Mindthoff S, Grunau S, Steinfort LL, Girzalsky W, Hiltunen JK, Erdmann R, et al.. Peroxisomal Pex11 is a pore-forming protein homologous to TRPM channels. Biochim Biophys Acta—Mol Cell Res. 2016;1863: 271–283. doi: 10.1016/j.bbamcr.2015.11.013 PubMed DOI

Koch J, Pranjic K, Huber A, Ellinger A, Hartig A, Kragler F, et al.. PEX11 family members are membrane elongation factors that coordinate peroxisome proliferation and maintenance. J Cell Sci. 2010;123: 3389–3400. doi: 10.1242/jcs.064907 PubMed DOI

Meyer M, Fehling H, Matthiesen J, Lorenzen S, Schuldt K, Bernin H, et al.. Overexpression of differentially expressed genes identified in non-pathogenic and pathogenic Entamoeba histolytica clones allow identification of new pathogenicity factors involved in amoebic liver abscess formation. PLoS Pathog. 2016;12: e1005853. doi: 10.1371/journal.ppat.1005853 PubMed DOI PMC

Nickel R, Tannich E. Transfection and transient expression of chloramphenicol acetyltransferase gene in the protozoan parasite Entamoeba histolytica. Proc Natl Acad Sci U S A. 1994;91: 7095–7098. doi: 10.1073/pnas.91.15.7095 PubMed DOI PMC

Picazarri K, Nakada-Tsukui K, Tsuboi K, Miyamoto E, Watanabe N, Kawakami E, et al.. Atg8 is involved in endosomal and phagosomal acidification in the parasitic protist Entamoeba histolytica. Cell Microbiol. 2015;17: 1510–1522. doi: 10.1111/cmi.12453 PubMed DOI PMC

Hanadate Y, Saito-Nakano Y, Nakada-Tsukui K, Nozaki T. Endoplasmic reticulum-resident Rab8A GTPase is involved in phagocytosis in the protozoan parasite Entamoeba histolytica. Cell Microbiol. 2016;18: 1358–73. doi: 10.1111/cmi.12570 PubMed DOI PMC

Kim PK, Mullen RT, Schumann U, Lippincott-Schwartz J. The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER. J Cell Biol. 2006;173: 521–532. doi: 10.1083/jcb.200601036 PubMed DOI PMC

Barros-Barbosa A, Ferreira MJ, Rodrigues TA, Pedrosa AG, Grou CP, Pinto MP, et al.. Membrane topologies of PEX13 and PEX14 provide new insights on the mechanism of protein import into peroxisomes. FEBS J. 2019;286: 205–222. doi: 10.1111/febs.14697 PubMed DOI

Santos HJ, Imai K, Hanadate Y, Fukasawa Y, Oda T, Mi-ichi F, et al.. Screening and discovery of lineage-specific mitosomal membrane proteins in Entamoeba histolytica. Mol Biochem Parasitol. 2016;209: 10–17. doi: 10.1016/j.molbiopara.2016.01.001 PubMed DOI

Schlüter A, Fourcade S, Domènech-Estévez E, Gabaldón T, Huerta-Cepas J, Berthommier G, et al.. PeroxisomeDB: A database for the peroxisomal proteome, functional genomics and disease. Nucleic Acids Res. 2007;35: 815–822. doi: 10.1093/nar/gkl935 PubMed DOI PMC

Neuberger G, Maurer-Stroh S, Eisenhaber B, Hartig A, Eisenhaber F. Motif refinement of the peroxisomal targeting signal 1 and evaluation of taxon-specific differences. J Mol Biol. 2003;328: 567–579. doi: 10.1016/s0022-2836(03)00318-8 PubMed DOI

Ramaley R, Fujita Y, Freese E. Purification and properties of Bacillus subtilis inositol dehydrogenase. J Biol Chem. 1979;254: 7684–7690. doi: 10.1016/S0021-9258(18)36000-9 PubMed DOI

Dambe TR, Kühn AM, Brossette T, Giffhorn F, Scheidig AJ. Crystal Structure of NADP(H)-Dependent 1,5-Anhydro-D-fructose reductase from Sinorhizobium morelense at 2.2 Å resolution: Construction of a NADH-accepting mutant and its application in rare sugar synthesis. Biochemistry. 2006;45: 10030–10042. doi: 10.1021/bi052589q PubMed DOI

Kingston RL, Scopes RK, Baker EN. The structure of glucose-fructose oxidoreductase from Zymomonas mobilis: an osmoprotective periplasmic enzyme containing non-dissociable NADP. Structure. 1996;4: 1413–1428. doi: 10.1016/s0969-2126(96)00149-9 PubMed DOI

Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 2011;27: 343–350. doi: 10.1093/bioinformatics/btq662 PubMed DOI PMC

Fukano K, Ozawa K, Kokubu M, Shimizu T, Ito S, Sasaki Y, et al.. Structural basis of L-glucose oxidation by scyllo-inositol dehydrogenase: Implications for a novel enzyme subfamily classification. PLoS One. 2018;13. doi: 10.1371/journal.pone.0198010 PubMed DOI PMC

van Straaten KE, Zheng H, Palmer DRJ, Sanders DAR. Structural investigation of myo-inositol dehydrogenase from Bacillus subtilis: implications for catalytic mechanism and inositol dehydrogenase subfamily classification. Biochem J. 2010;432: 237–247. doi: 10.1042/BJ20101079 PubMed DOI

Archibald JM. The puzzle of plastid evolution. Curr Biol. Cell Press; 2009. pp. R81–R88. doi: 10.1016/j.cub.2008.11.067 PubMed DOI

Jansen RLM, Santana Molina C, Van Den Noort M, Devos DP, Van Der Klei IJ. Comparative genomics of peroxisome biogenesis proteins: making sense of the PEX mess. bioRxiv. 2020; 2020.12.16.423121. doi: 10.1101/2020.12.16.423121 PubMed DOI PMC

Dolezal P, Dagley MJ, Kono M, Wolynec P, Likić VA, Foo JH, et al.. The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathog. 2010;6: e1000812. doi: 10.1371/journal.ppat.1000812 PubMed DOI PMC

Wiedemann N, Pfanner N. Mitochondrial machineries for protein import and assembly. Annu Rev Biochem. 2017;86: 685–714. doi: 10.1146/annurev-biochem-060815-014352 PubMed DOI

Schlüter A, Fourcade S, Ripp R, Mandel JL, Poch O, Pujol A. The evolutionary origin of peroxisomes: An ER-peroxisome connection. Mol Biol Evol. 2006;23: 838–845. doi: 10.1093/molbev/msj103 PubMed DOI

Knoops K, Manivannan S, Cepińska MN, Krikken AM, Kram AM, Veenhuis M, et al.. Preperoxisomal vesicles can form in the absence of Pex3. J Cell Biol. 2014;204: 659–668. doi: 10.1083/jcb.201310148 PubMed DOI PMC

Jansen RLM, Klei IJ. The peroxisome biogenesis factors Pex3 and Pex19: multitasking proteins with disputed functions. FEBS Lett. 2019;593: 457–474. doi: 10.1002/1873-3468.13340 PubMed DOI

Banerjee H, Knoblach B, Rachubinski RA. The early-acting glycosome biogenic protein Pex3 is essential for trypanosome viability. Life Sci Alliance. 2019;2: e201900421. doi: 10.26508/lsa.201900421 PubMed DOI PMC

Kalel VC, Li M, Gaussmann S, Delhommel F, Schäfer A-B, Tippler B, et al.. Evolutionary divergent PEX3 is essential for glycosome biogenesis and survival of trypanosomatid parasites. Biochim Biophys Acta—Mol Cell Res. 2019;1866: 118520. doi: 10.1016/j.bbamcr.2019.07.015 PubMed DOI

Miyata N, Fujiki Y. Shuttling echanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Mol Cell Biol. 2005;25: 10822–10832. doi: 10.1128/MCB.25.24.10822-10832.2005 PubMed DOI PMC

Williams C, Van Den Berg M, Sprenger RR, Distel B. A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. J Biol Chem. 2007;282: 22534–22543. doi: 10.1074/jbc.M702038200 PubMed DOI

Ma C, Schumann U, Rayapuram N, Subramani S. The peroxisomal matrix import of Pex8p requires only PTS receptors and Pex14p. Mol Biol Cell. 2009;20: 3680–3689. doi: 10.1091/mbc.e09-01-0037 PubMed DOI PMC

Bosch DE, Siderovski DP. Structural determinants of ubiquitin conjugation in Entamoeba histolytica. J Biol Chem. 2013;288: 2290–2302. doi: 10.1074/jbc.M112.417337 PubMed DOI PMC

Grou CP, Carvalho AF, Pinto MP, Wiese S, Piechura H, Meyer HE, et al.. Members of the E2D (UbcH5) family mediate the ubiquitination of the conserved cysteine of Pex5p, the peroxisomal import receptor. J Biol Chem. 2008;283: 14190–14197. doi: 10.1074/jbc.M800402200 PubMed DOI

Platta HW, Hagen S, Reidick C, Erdmann R. The peroxisomal receptor dislocation pathway: To the exportomer and beyond. Biochimie; 2014;98: 16–28. doi: 10.1016/j.biochi.2013.12.009 PubMed DOI

Lazarow PB. Chapter 3.1.7. The import receptor Pex7p and the PTS2 targeting sequence. Biochim Biophys Acta—Mol Cell Res. 2006;1763: 1599–1604. doi: 10.1016/j.bbamcr.2006.08.011 PubMed DOI

Žárský V, Tachezy J. Evolutionary loss of peroxisomes–not limited to parasites. Biol Direct. 2015;10: 74. doi: 10.1186/s13062-015-0101-6 PubMed DOI PMC

Mattiazzi Ušaj M, Brložnik M, Kaferle P, Žitnik M, Wolinski H, Leitner F, et al.. Genome-wide localization study of yeast pex11 identifies peroxisome-mitochondria interactions through the ERMES complex. J Mol Biol. 2015;427: 2072–2087. doi: 10.1016/j.jmb.2015.03.004 PubMed DOI PMC

Sacksteder KA, Jones JM, South ST, Li X, Liu Y, Gould SJ. PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis. J Cell Biol. 2000;148: 931–944. doi: 10.1083/jcb.148.5.931 PubMed DOI PMC

Eckert JH, Johnsson N. Pex10p links the ubiquitin conjugating enzyme Pex4p to the protein import machinery of the peroxisome. J Cell Sci. 2003;116: 3623–3634. doi: 10.1242/jcs.00678 PubMed DOI

Wideman JG, Muñoz-Gómez SA. The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: An evolutionary view from comparative cell biology. Biochim Biophys Acta. 2016;1861: 900–912. doi: 10.1016/j.bbalip.2016.01.015 PubMed DOI

Makki A, Rada P, Žárský V, Kereïche S, Kováčik L, Novotný M, et al.. Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis. PLoS Biol. 2019;17: e3000098. doi: 10.1371/journal.pbio.3000098 PubMed DOI PMC

Makiuchi T, Santos HJ, Tachibana H, Nozaki T. Hetero-oligomer of dynamin-related proteins participates in the fission of highly divergent mitochondria from Entamoeba histolytica. Sci Rep. 2017;7: 13439. doi: 10.1038/s41598-017-13721-5 PubMed DOI PMC

Sharma S, Bhattacharya S, Bhattacharya A. PtdIns(4,5)P 2 is generated by a novel phosphatidylinositol 4-phosphate 5-kinase in the protist parasite Entamoeba histolytica. FEBS J. 2019;286: 2216–2234. doi: 10.1111/febs.14804 PubMed DOI

Nakada-Tsukui K, Watanabe N, Maehama T, Nozaki T. Phosphatidylinositol kinases and phosphatases in Entamoeba histolytica. Front Cell Infect Microbiol. 2019;9. doi: 10.3389/fcimb.2019.00150 PubMed DOI PMC

Michell RH. Inositol derivatives: Evolution and functions. Nat Rev Mol Cell Biol. 2008;9: 151–161. doi: 10.1038/nrm2334 PubMed DOI

Chatree S, Thongmaen N, Tantivejkul K, Sitticharoon C, Vucenik I. Role of inositols and inositol phosphates in energy metabolism. Molecules. 2020;25: 5079. doi: 10.3390/molecules25215079 PubMed DOI PMC

Xing G, Hoffart LM, Diao Y, Prabhu KS, Arner RJ, Reddy CC, et al.. A coupled dinuclear iron cluster that is perturbed by substrate binding in myo-inositol oxygenase. Biochemistry. 2006;45: 5393–5401. doi: 10.1021/bi0519607 PubMed DOI

Yoshida K, Yamaguchi M, Morinaga T, Kinehara M, Ikeuchi M, Ashida H, et al.. myo-Inositol catabolism in Bacillus subtilis. J Biol Chem. 2008;283: 10415–10424. doi: 10.1074/jbc.M708043200 PubMed DOI

Gross W, Meyer A. Distribution of myo-inositol dehydrogenase in algae. Eur J Phycol. 2003;38: 191–194. doi: 10.1080/1364253031000121705 DOI

Al-Saryi NA, Al-Hejjaj MY, van Roermund CWT, Hulmes GE, Ekal L, Payton C, et al.. Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae. Sci Rep. 2017;7: 11868. doi: 10.1038/s41598-017-11942-2 PubMed DOI PMC

Ast J, Stiebler AC, Freitag J, Bölker M. Dual targeting of peroxisomal proteins. Front Physiol. 2013;4: 297. doi: 10.3389/fphys.2013.00297 PubMed DOI PMC

Stein R, Schnarrenberger C, Gross W. Myo-inositol dehydrogenase from the acido- and thermophilic red alga Galdieria sulphuraria. Phytochemistry. 1997;46: 17–20. doi: 10.1016/S0031-9422(96)00830-8 DOI

Bertwistle D, Vogt L, Aamudalapalli HB, Palmer DRJ, Sanders DAR. Purification, crystallization and room-temperature X-ray diffraction of inositol dehydrogenase LcIDH2 from Lactobacillus casei BL23. Acta Crystallogr Sect F Struct Biol Commun. 2014;70: 979–983. doi: 10.1107/S2053230X14011595 PubMed DOI PMC

Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al.. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47: D309–D314. doi: 10.1093/nar/gky1085 PubMed DOI PMC

Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. Nucleic Acids Res. 2018;46: W200–W204. doi: 10.1093/nar/gky448 PubMed DOI PMC

Altschul S. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25: 3389–3402. doi: 10.1093/nar/25.17.3389 PubMed DOI PMC

Soding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005;33: W244–W248. doi: 10.1093/nar/gki408 PubMed DOI PMC

Subramani S, Koller A, Snyder WB. Import of peroxisomal matrix and membrane proteins. Annu Rev Biochem. 2000;69: 399–418. doi: 10.1146/annurev.biochem.69.1.399 PubMed DOI

Emanuelsson O, Elofsson A, Von Heijne G, Cristóbal S. In silico prediction of the peroxisomal proteome in fungi, plants and animals. J Mol Biol. 2003;330: 443–456. doi: 10.1016/s0022-2836(03)00553-9 PubMed DOI

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30: 772–780. doi: 10.1093/molbev/mst010 PubMed DOI PMC

Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): A new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10. doi: 10.1186/1471-2148-10-10 PubMed DOI PMC

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32: 268–274. doi: 10.1093/molbev/msu300 PubMed DOI PMC

Lartillot N, Philippe H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol. 2004;21: 1095–1109. doi: 10.1093/molbev/msh112 PubMed DOI

Biller L, Schmidt H, Krause E, Gelhaus C, Matthiesen J, Handal G, et al.. Comparison of two genetically related Entamoeba histolytica cell lines derived from the same isolate with different pathogenic properties. Proteomics. 2009;9: 4107–4120. doi: 10.1002/pmic.200900022 PubMed DOI

Clark CG, Diamond LS. Methods for cultivation of luminal parasitic protists of clinical importance. Clin Microbiol Rev. 2002;15: 329–341. doi: 10.1128/CMR.15.3.329-341.2002 PubMed DOI PMC

Baxt LA, Rastew E, Bracha R, Mirelman D, Singh U. Downregulation of an Entamoeba histolytica rhomboid protease reveals roles in regulating parasite adhesion and phagocytosis. Eukaryot Cell. 2010;9: 1283–1293. doi: 10.1128/EC.00015-10 PubMed DOI PMC

Narayanasamy RK, Castañón-Sanchez CA, Luna-Arias JP, García-Rivera G, Avendaño-Borromeo B, Labra-Barrios ML, et al.. The Entamoeba histolytica TBP and TRF1 transcription factors are GAAC-box binding proteins, which display differential gene expression under different stress stimuli and during the interaction with mammalian cells. Parasit Vectors. 2018;11: 153. doi: 10.1186/s13071-018-2698-7 PubMed DOI PMC

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25: 402–408. doi: 10.1006/meth.2001.1262 PubMed DOI

Malínská K, Malínský J, Opekarová M, Tanner W. Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol Biol Cell. 2003;14: 4427–4436. doi: 10.1091/mbc.e03-04-0221 PubMed DOI PMC

Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13: 2513–2526. doi: 10.1074/mcp.M113.031591 PubMed DOI PMC

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al.. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13: 731–740. doi: 10.1038/nmeth.3901 PubMed DOI

Bruchhaus I, Brattig NW, Tannich E. Recombinant expression, purification and biochemical characterization of a superoxide dismutase from Entamoeba histolytica. Arch Med Res. 1992;23: 27–29. Available: https://pubmed.ncbi.nlm.nih.gov/1340312/ PubMed

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al.. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9: 676–682. doi: 10.1038/nmeth.2019 PubMed DOI PMC

Costes S V., Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J. 2004;86: 3993–4003. doi: 10.1529/biophysj.103.038422 PubMed DOI PMC

de Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, Provoost T, et al.. Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods. 2012;9: 690–696. doi: 10.1038/nmeth.2075 PubMed DOI

Štáfková J, Rada P, Meloni D, Žárský V, Smutná T, Zimmann N, et al.. Dynamic secretome of Trichomonas vaginalis: Case study of β-amylases. Mol Cell Proteomics. 2018;17: 304–320. doi: 10.1074/mcp.RA117.000434 PubMed DOI PMC

Berman T, Magasanik B. The pathway of myo-inositol degradation in Aerobacter aerogenes. Dehydrogenation and dehydration. J Biol Chem. 1966;241: 800–806. doi: 10.1016/S0021-9258(18)96836-5 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...