Anaerobiosis Dotaz Zobrazit nápovědu
The aim of this work was to study, under model conditions, combined effects of the concentration of lactose (0-1% w/v), NaCl (0-2% w/v) and aero/anaerobiosis on the growth and tyramine production in 3 strains of Lactococcus lactis subsp. lactis and 2 strains of L. lactis subsp. cremoris. The levels of the factors tested were chosen with respect to the conditions which can occur during the real process of natural cheese production, including the culture temperature (10 ± 1°C). In all strains tested, tyrosine decarboxylation was most influenced by NaCl concentration; the highest production of tyramine was obtained within the culture with the highest (2% w/v) salt concentration applied. Two of the strains L. lactis subsp. lactis produced tyramine only in broth with the highest NaCl concentration tested. In the remaining 3 strains of L. lactis, tyramine was detected under all conditions applied. The tested concentration of lactose and aero/anaerobiosis had a less significant effect on tyramine decarboxylation. However, it was also found that at the same concentrations of NaCl and lactose, a higher amount of tyramine was detected under anaerobic conditions. In all strains tested, tyramine decarboxylation started during the active growth phase of the cells.
- MeSH
- aerobióza MeSH
- anaerobióza MeSH
- chlorid sodný metabolismus MeSH
- Lactococcus lactis klasifikace enzymologie růst a vývoj metabolismus MeSH
- laktosa metabolismus MeSH
- sýr mikrobiologie MeSH
- teplota MeSH
- tyramin biosyntéza MeSH
- tyrosindekarboxylasa metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Anoxia tolerance can be evaluated not only in terms of growth or survival of plant organs during oxygen deprivation, but also in relation to carbohydrate utilization in the context of a well-modulated fermentative metabolism. Rice (Oryza spp.) is unique among cereals, in that it has the distinctive ability to germinate under complete anaerobiosis by using the starchy reserves in its seeds to fuel the anaerobic metabolism. The aim of the present study was to evaluate the ability of germinating rice seedlings to survive a long-term oxygen deficiency [40 days after sowing (DAS)] and the effects on sugar metabolism, focusing on starch degradation as well as soluble sugars transport and storage under anoxia. No significant decline in vitality occurred until 30 DAS though no recovery was detected following longer anoxic treatments. Growth arrest was observed following anoxic treatments longer that 20 DAS, in concomitance with considerably lower ethanol production. Amylolytic activity in embryos and endosperms had similar responses to anoxia, reaching maximum content 30 days after the onset of stress, following which the levels declined for the remainder of the experiment. Under anoxia, average amylolytic activity was twofold higher in embryos than endosperms. Efficient starch degradation was observed in rice under anoxia at the onset of the treatment but it decreased over time and did not lead to a complete depletion. Our analysis of α-amylase activity did not support the hypothesis that starch degradation plays a critical role in explaining differences in vitality and coleoptile growth under prolonged oxygen deprivation.
- MeSH
- alfa-amylasy metabolismus MeSH
- anaerobióza MeSH
- endosperm metabolismus MeSH
- ethanol metabolismus MeSH
- klíčení * MeSH
- kotyledon metabolismus MeSH
- metabolismus sacharidů * MeSH
- rozpustnost MeSH
- rýže (rod) embryologie metabolismus MeSH
- škrob metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- anaerobióza MeSH
- obratlovci metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
Bacillus subtilis, which grows under aerobic conditions, employs fatty acid desaturase (Des) to fluidize its membrane when subjected to temperature downshift. Des requires molecular oxygen for its activity, and its expression is regulated by DesK-DesR, a two-component system. Transcription of des is induced by the temperature downshift and is decreased when membrane fluidity is restored. B. subtilis is also capable of anaerobic growth by nitrate or nitrite respiration. We studied the mechanism of cold adaptation in B. subtilis under anaerobic conditions that were predicted to inhibit Des activity. We found that in anaerobiosis, in contrast to aerobic growth, the induction of des expression after temperature downshift (from 37 degrees C to 25 degrees C) was not downregulated. However, the transfer from anaerobic to aerobic conditions rapidly restored the downregulation. Under both aerobic and anaerobic conditions, the induction of des expression was substantially reduced by the addition of external fluidizing oleic acid and was fully dependent on the DesK-DesR two-component regulatory system. Fatty acid analysis proved that there was no desaturation after des induction under anaerobic conditions despite the presence of high levels of the des protein product, which was shown by immunoblot analysis. The cold adaptation of B. subtilis in anaerobiosis is therefore mediated exclusively by the increased anteiso/iso ratio of branched-chain fatty acids and not by the temporarily increased level of unsaturated fatty acids that is typical under aerobic conditions. The degrees of membrane fluidization, as measured by diphenylhexatriene fluorescence anisotropy, were found to be similar under both aerobic and anaerobic conditions.
- MeSH
- aerobióza MeSH
- anaerobióza MeSH
- Bacillus subtilis metabolismus fyziologie MeSH
- bakteriální proteiny biosyntéza MeSH
- buněčná membrána chemie MeSH
- desaturasy mastných kyselin biosyntéza MeSH
- fluidita membrány MeSH
- fyziologická adaptace MeSH
- mastné kyseliny metabolismus MeSH
- nízká teplota MeSH
- regulace genové exprese u bakterií MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH