Subcellular proteomics of the protist Paradiplonema papillatum reveals the digestive capacity of the cell membrane and the plasticity of peroxisomes across euglenozoans

. 2025 Dec ; 23 (12) : e3003319. [epub] 20251203

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41336180

Grantová podpora
Wellcome Trust - United Kingdom

Diplonemids are among the most diverse and abundant protists in the deep ocean, have extremely complex and ancient cellular systems, and exhibit unique metabolic capacities. Despite this, we know very little about this major group of eukaryotes. To establish a model organism for comprehensive investigation, we performed subcellular proteomics on Paradiplonema papillatum and localized 4,870 proteins to 22 cellular compartments. We additionally confirmed the predicted location of several proteins by epitope tagging and fluorescence microscopy. To probe the metabolic capacities of P. papillatum, we explored the proteins predicted to the cell membrane compartment in our subcellular proteomics dataset. Our data revealed an accumulation of many carbohydrate-degrading enzymes (CDZymes). Our predictions suggest that these CDZymes are exposed to the extracellular space, supporting proposals that diplonemids may specialize in breaking down carbohydrates in plant and algal cell walls. Further exploration of carbohydrate metabolism revealed an evolutionary divergence in the function of glycosomes (modified peroxisomes) in diplonemids versus kinetoplastids. Our subcellular proteome provides a resource for future investigations into the unique cell biology of diplonemids.

Zobrazit více v PubMed

Flegontova O, Flegontov P, Malviya S, Audic S, Wincker P, de Vargas C, et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr Biol. 2016;26(22):3060–5. doi: 10.1016/j.cub.2016.09.031 PubMed DOI

Gawryluk RMR, Del Campo J, Okamoto N, Strassert JFH, Lukeš J, Richards TA, et al. Morphological identification and single-cell genomics of marine diplonemids. Curr Biol. 2016;26(22):3053–9. doi: 10.1016/j.cub.2016.09.013 PubMed DOI

Mukherjee I, Salcher MM, Andrei A-Ş, Kavagutti VS, Shabarova T, Grujčić V, et al. A freshwater radiation of diplonemids. Environ Microbiol. 2020;22(11):4658–68. doi: 10.1111/1462-2920.15209 PubMed DOI

Obiol A, Giner CR, Sánchez P, Duarte CM, Acinas SG, Massana R. A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Mol Ecol Resour. 2020;20(3):10.1111/1755-0998.13147. doi: 10.1111/1755-0998.13147 PubMed DOI

Lax G, Okamoto N, Keeling PJ. Phylogenomic position of eupelagonemids, abundant, and diverse deep-ocean heterotrophs. ISME J. 2024;18(1):wrae040. doi: 10.1093/ismejo/wrae040 PubMed DOI PMC

Tashyreva D, Simpson AGB, Prokopchuk G, Škodová-Sveráková I, Butenko A, Hammond M, et al. Diplonemids—a review on “New” flagellates on the oceanic block. Protist. 2022;173(2):125868. doi: 10.1016/j.protis.2022.125868 PubMed DOI

Prokopchuk G, Korytář T, Juricová V, Majstorović J, Horák A, Šimek K, et al. Trophic flexibility of marine diplonemids—switching from osmotrophy to bacterivory. ISME J. 2022;16(5):1409–19. doi: 10.1038/s41396-022-01192-0 PubMed DOI PMC

Škodová-Sveráková I, Záhonová K, Juricová V, Danchenko M, Moos M, Baráth P, et al. Highly flexible metabolism of the marine euglenozoan protist PubMed DOI PMC

Valach M, Moreira S, Petitjean C, Benz C, Butenko A, Flegontova O, et al. Recent expansion of metabolic versatility in PubMed DOI PMC

Tashyreva D, Faktorová D, Stříbrná E, Horák A, Lukeš J, Archibald JM, Oatley G, Sinclair E, Aunin E, Gettle N, et al. The genome sequences of the diplonemid protist PubMed DOI PMC

Tashyreva D, Faktorová D, Horák A, Lukeš J, Archibald JM, Oatley G, et al. The genome sequences of the diplonemid protist PubMed DOI PMC

Faktorová D, Kaur B, Valach M, Graf L, Benz C, Burger G, et al. Targeted integration by homologous recombination enables in situ tagging and replacement of genes in the marine microeukaryote PubMed DOI

Akiyoshi B, Faktorová D, Lukeš J. Discovery of unique mitotic mechanisms in PubMed DOI PMC

Valach M, Benz C, Aguilar LC, Gahura O, Faktorová D, Zíková A, et al. Miniature RNAs are embedded in an exceptionally protein-rich mitoribosome via an elaborate assembly pathway. Nucleic Acids Res. 2023;51(12):6443–60. doi: 10.1093/nar/gkad422 PubMed DOI PMC

Valach M, Léveillé-Kunst A, Gray MW, Burger G. Respiratory chain Complex I of unparalleled divergence in diplonemids. J Biol Chem. 2018;293(41):16043–56. doi: 10.1074/jbc.RA118.005326 PubMed DOI PMC

Benz C, Raas MWD, Tripathi P, Faktorová D, Tromer EC, Akiyoshi B, et al. On the possibility of yet a third kinetochore system in the protist phylum Euglenozoa. mBio. 2024;15(12):e0293624. doi: 10.1128/mbio.02936-24 PubMed DOI PMC

Záhonová K, Lukeš J, Dacks JB. Diplonemid protists possess exotic endomembrane machinery, impacting models of membrane trafficking in modern and ancient eukaryotes. Curr Biol. 2025;35(7):1508-1520.e2. doi: 10.1016/j.cub.2025.02.032 PubMed DOI

Richards TA, Eme L, Archibald JM, Leonard G, Coelho SM, de Mendoza A, et al. Reconstructing the last common ancestor of all eukaryotes. PLoS Biol. 2024;22(11):e3002917. doi: 10.1371/journal.pbio.3002917 PubMed DOI PMC

Geladaki A, Kočevar Britovšek N, Breckels LM, Smith TS, Vennard OL, Mulvey CM, et al. Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics. Nat Commun. 2019;10(1):331. doi: 10.1038/s41467-018-08191-w PubMed DOI PMC

Opperdoes FR, Michels PA. The glycosomes of the Kinetoplastida. Biochimie. 1993;75(3–4):231–4. doi: 10.1016/0300-9084(93)90081-3 PubMed DOI

Šubrtová K, Panicucci B, Zíková A. ATPaseTb2, a unique membrane-bound FoF1-ATPase component, is essential in bloodstream and dyskinetoplastic trypanosomes. PLoS Pathog. 2015;11(2):e1004660. doi: 10.1371/journal.ppat.1004660 PubMed DOI PMC

Joseph A-M, Adhihetty PJ, Wawrzyniak NR, Wohlgemuth SE, Picca A, Kujoth GC, et al. Dysregulation of mitochondrial quality control processes contribute to sarcopenia in a mouse model of premature aging. PLoS One. 2013;8(7):e69327. doi: 10.1371/journal.pone.0069327 PubMed DOI PMC

Chou C-W, Yang R-Y, Chan L-C, Li C-F, Sun L, Lee H-H, et al. The stabilization of PD-L1 by the endoplasmic reticulum stress protein GRP78 in triple-negative breast cancer. Am J Cancer Res. 2020;10(8):2621–34. PubMed PMC

Orsburn BC. Proteome discoverer—a community enhanced data processing suite for protein informatics. Proteomes. 2021;9(1):15. doi: 10.3390/proteomes9010015 PubMed DOI PMC

Breckels LM, Holden SB, Wojnar D, Mulvey CM, Christoforou A, Groen A, et al. Learning from heterogeneous data sources: an application in spatial proteomics. PLoS Comput Biol. 2016;12(5):e1004920. doi: 10.1371/journal.pcbi.1004920 PubMed DOI PMC

Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, et al. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance. 2019;2(5):e201900429. doi: 10.26508/lsa.201900429 PubMed DOI PMC

Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol. 2022;40(7):1023–5. doi: 10.1038/s41587-021-01156-3 PubMed DOI PMC

Hallgren J, Tsirigos K, Pederson M, Armenteros J, Marcatili P, Nielsen H, et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv. 2022. doi: 10.1101/2022.04.08.487609 DOI

Billington K, Halliday C, Madden R, Dyer P, Barker AR, Moreira-Leite FF, et al. Genome-wide subcellular protein map for the flagellate parasite PubMed DOI PMC

Tashyreva D, Týč J, Horák A, Lukeš J. Ultrastructure and 3D reconstruction of a diplonemid protist (Diplonemea) and its novel membranous organelle. mBio. 2023;14(5):e0192123. doi: 10.1128/mbio.01921-23 PubMed DOI PMC

Porter D.

Newell SY. Fungi and bacteria in or on leaves of Eelgrass ( PubMed DOI PMC

George EE, Tashyreva D, Kwong WK, Okamoto N, Horák A, Husnik F, et al. Gene transfer agents in bacterial endosymbionts of microbial eukaryotes. Genome Biol Evol. 2022;14(7):evac099. doi: 10.1093/gbe/evac099 PubMed DOI PMC

Tashyreva D, Votýpka J, Yabuki A, Horák A, Lukeš J. Description of new diplonemids (Diplonemea, Euglenozoa) and their endosymbionts: charting the morphological diversity of these poorly known heterotrophic flagellates. Protist. 2025;177:126090. doi: 10.1016/j.protis.2025.126090 PubMed DOI

Michels PAM, Bringaud F, Herman M, Hannaert V. Metabolic functions of glycosomes in trypanosomatids. Biochim Biophys Acta. 2006;1763(12):1463–77. doi: 10.1016/j.bbamcr.2006.08.019 PubMed DOI

Makiuchi T, Annoura T, Hashimoto M, Hashimoto T, Aoki T, Nara T. Compartmentalization of a glycolytic enzyme in Diplonema, a non-kinetoplastid euglenozoan. Protist. 2011;162(3):482–9. doi: 10.1016/j.protis.2010.11.003 PubMed DOI

Morales J, Hashimoto M, Williams TA, Hirawake-Mogi H, Makiuchi T, Tsubouchi A, et al. Differential remodelling of peroxisome function underpins the environmental and metabolic adaptability of diplonemids and kinetoplastids. Proc Biol Sci. 2016;283(1830):20160520. doi: 10.1098/rspb.2016.0520 PubMed DOI PMC

Jirsová D, Licknack TJ, Poh Y-P, Qiu Y, Quan N, Chou T-F, et al. Subcellular proteomics of DOI

Freitag J, Stehlik T, Stiebler AC, Bölker M. The obvious and the hidden: prediction and function of fungal peroxisomal matrix proteins. Subcell Biochem. 2018;89:139–55. doi: 10.1007/978-981-13-2233-4_6 PubMed DOI

Río Bártulos C, Rogers MB, Williams TA, Gentekaki E, Brinkmann H, Cerff R, et al. Mitochondrial glycolysis in a major lineage of eukaryotes. Genome Biol Evol. 2018;10(9):2310–25. doi: 10.1093/gbe/evy164 PubMed DOI PMC

Kovářová J, Barrett MP. The pentose phosphate pathway in parasitic trypanosomatids. Trends Parasitol. 2016;32(8):622–34. doi: 10.1016/j.pt.2016.04.010 PubMed DOI

Güther MLS, Urbaniak MD, Tavendale A, Prescott A, Ferguson MAJ. High-confidence glycosome proteome for procyclic form PubMed DOI PMC

Moloney NM, Barylyuk K, Tromer E, Crook OM, Breckels LM, Lilley KS, et al. Mapping diversity in African trypanosomes using high resolution spatial proteomics. Nat Commun. 2023;14(1):4401. doi: 10.1038/s41467-023-40125-z PubMed DOI PMC

Gray MW, Valach M, Sarrasin M, Le Sieur FA, Lukeš J, Burger G. The mitochondrial proteome of diplonemids: from conventional pathway to eccentric RNA editing and transcript processing. BMC Genomics. 2025. PubMed PMC

Hammond MJ, Nenarokova A, Butenko A, Zoltner M, Dobáková EL, Field MC, et al. A uniquely complex mitochondrial proteome from PubMed DOI PMC

Faktorová D, Nisbet RER, Fernández Robledo JA, Casacuberta E, Sudek L, Allen AE, et al. Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nat Methods. 2020;17(5):481–94. doi: 10.1038/s41592-020-0796-x PubMed DOI PMC

Crook OM, Breckels LM, Lilley KS, Kirk PDW, Gatto L. A Bioconductor workflow for the Bayesian analysis of spatial proteomics. F1000Res. 2019;8:446. doi: 10.12688/f1000research.18636.1 PubMed DOI PMC

Ødum MT, Teufel F, Thumuluri V, Almagro Armenteros JJ, Johansen AR, Winther O, et al. DeepLoc 2.1: multi-label membrane protein type prediction using protein language models. Nucleic Acids Res. 2024;52(W1):W215–20. doi: 10.1093/nar/gkae237 PubMed DOI PMC

Gíslason M, Nielsen H, Armenteros J, Johansen A. Prediction of GPI-anchored proteins with pointer neural networks. Curr Res in Biotech. 2021;3:6–13.

Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG Tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428(4):726–31. doi: 10.1016/j.jmb.2015.11.006 PubMed DOI

Perez-Riverol Y, Bandla C, Kundu DJ, Kamatchinathan S, Bai J, Hewapathirana S, et al. The PRIDE database at 20 years: 2025 update. Nucleic Acids Res. 2025;53(D1):D543–53. doi: 10.1093/nar/gkae1011 PubMed DOI PMC

Faktorová D, Záhonová K, Benz C, Dacks JB, Field MC, Lukeš J. Functional differentiation of Sec13 paralogues in the euglenozoan protists. Open Biol. 2023;13(6):220364. doi: 10.1098/rsob.220364 PubMed DOI PMC

Kaur B, Valach M, Peña-Diaz P, Moreira S, Keeling PJ, Burger G, et al. Transformation of PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...