Gene Transfer Agents in Bacterial Endosymbionts of Microbial Eukaryotes

. 2022 Jul 02 ; 14 (7) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35738252

Gene transfer agents (GTAs) are virus-like structures that package and transfer prokaryotic DNA from donor to recipient prokaryotic cells. Here, we describe widespread GTA gene clusters in the highly reduced genomes of bacterial endosymbionts from microbial eukaryotes (protists). Homologs of the GTA capsid and portal complexes were initially found to be present in several highly reduced alphaproteobacterial endosymbionts of diplonemid protists (Rickettsiales and Rhodospirillales). Evidence of GTA expression was found in polyA-enriched metatranscriptomes of the diplonemid hosts and their endosymbionts, but due to biases in the polyA-enrichment methods, levels of GTA expression could not be determined. Examining the genomes of closely related bacteria revealed that the pattern of retained GTA head/capsid complexes with missing tail components was common across Rickettsiales and Holosporaceae (Rhodospirillales), all obligate symbionts with a wide variety of eukaryotic hosts. A dN/dS analysis of Rickettsiales and Holosporaceae symbionts revealed that purifying selection is likely the main driver of GTA evolution in symbionts, suggesting they remain functional, but the ecological function of GTAs in bacterial symbionts is unknown. In particular, it is unclear how increasing horizontal gene transfer in small, largely clonal endosymbiont populations can explain GTA retention, and, therefore, the structures may have been repurposed in endosymbionts for host interactions. Either way, their widespread retention and conservation in endosymbionts of diverse eukaryotes suggests an important role in symbiosis.

Zobrazit více v PubMed

Altschul  SF, Gish  W, Miller  W, Myers  EW, Lipman  DJ. 1990. Basic local alignment search tool. J Mol Biol. 215:403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI

Bárdy  P, et al.  2020. Structure and mechanism of DNA delivery of a gene transfer agent. Nat Commun. 11:303. 10.1038/s41467-020-16669-9 PubMed DOI PMC

Bordenstein  SR, Bordenstein  SR. 2016. Eukaryotic association module in phage WO genomes from Wolbachia. Nat Commun. 7:13155. 10.1038/ncomms13155 PubMed DOI PMC

Castelli  M, et al.  2019. Deianiraea, an extracellular bacterium associated with the ciliate Paramecium, suggests an alternative scenario for the evolution of Rickettsiales. ISME J. 13:2280–2294. 10.1038/s41396-019-0433-9 PubMed DOI PMC

Castelli  M, et al.  2021. ‘Candidatus Sarmatiella mevalonica’ endosymbiont of the ciliate Paramecium provides insights on evolutionary plasticity among Rickettsiales. Environ Microbiol. 23:1684–1701. 10.1111/1462-2920.15396 PubMed DOI

Castelli  M, et al.  2022. ‘Candidatus Gromoviella agglomerans’, a novel intracellular Holosporaceae parasite of the ciliate Paramecium showing marked genome reduction. Environ Microbiol Rep. 14:34–49. 10.1111/1758-2229.13021 PubMed DOI

Christensen  S, Serbus  LR. 2020. Gene transfer agents in symbiotic microbes. In: Kloc M, editor. Symbiosis: cellular, molecular, medical and evolutionary aspects. Vol. 69. Springer. p. 25–76. PubMed

Dale  C, Wang  B, Moran  N, Ochman  H. 2003. Loss of DNA recombinational repair enzymes in the initial stages of genome degeneration. Mol Biol Evol. 20:1188–1194. 10.1093/molbev/msg138 PubMed DOI

Dohra  H, Tanaka  K, Suzuki  T, Fujishima  M, Suzuki  H. 2014. Draft genome sequences of three Holospora species (Holospora obtusa, Holospora undulata, and Holospora elegans), endonuclear symbiotic bacteria of the ciliate Paramecium caudatum. FEMS Microbiol Lett. 359:16–18. 10.1111/1574-6968.12577 PubMed DOI

Ericson  CF, et al.  2019. A contractile injection system stimulates tubeworm metamorphosis by translocating a proteinaceous effector. eLife  8:46845. 10.7554/ELIFE.46845 PubMed DOI PMC

Finn  RD, Clements  J, Eddy  SR. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39:W29–W37. 10.1093/nar/gkr367 PubMed DOI PMC

Floriano  AM, et al.  2018. The genome sequence of “Candidatus Fokinia solitaria”: insights on reductive evolution in Rickettsiales. Genome Biol Evol. 10:1120–1126. 10.1093/gbe/evy072 PubMed DOI PMC

Fogg  PCM, Westbye  AB, Beatty  JT. 2012. One for all or all for one: heterogeneous expression and host cell lysis are key to gene transfer agent activity in Rhodobacter capsulatus. PLoS One  7:e43772. 10.1371/JOURNAL.PONE.0043772 PubMed DOI PMC

Garushyants  SK, et al.  2018. Comparative genomic analysis of Holospora spp., intranuclear symbionts of paramecia. Front Microbiol. 9:738. 10.3389/fmicb.2018.00738 PubMed DOI PMC

George  EE, et al.  2020. Highly reduced genomes of protist endosymbionts show evolutionary convergence. Curr Biol. 30:925–933.e3. 10.1016/j.cub.2019.12.070 PubMed DOI

Ghequire  MGK, De Mot  R. 2015. The tailocin tale: peeling off phage tails. Trends Microbiol. 23:587–590. 10.1016/J.TIM.2015.07.011 PubMed DOI

Giannotti  D, Boscaro  V, Husnik  F, Vannini  C, Keeling  PJ. 2022. The ‘other’ Rickettsiales: an overview of the family ‘Candidatus Midichloriaceae’. Appl Environ Microbiol. 88:e0243221. 10.1128/AEM.02432-21 PubMed DOI PMC

Husnik  F, et al.  2021. Bacterial and archaeal symbioses with protists. Curr Biol. 31:R862–R877. 10.1016/J.CUB.2021.05.049 PubMed DOI

Hynes  AP, et al.  2016. Functional and evolutionary characterization of a gene transfer agent’s multilocus “genome”.  Mol Biol Evol. 33:2530–2543. 10.1093/MOLBEV/MSW125 PubMed DOI PMC

Hynes  AP, Mercer  RG, Watton  DE, Buckley  CB, Lang  AS. 2012. DNA packaging bias and differential expression of gene transfer agent genes within a population during production and release of the Rhodobacter capsulatus gene transfer agent, RcGTA. Mol Microbiol. 85:314–325. 10.1111/J.1365-2958.2012.08113.X PubMed DOI

Kaur  B, et al.  2020. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res. 48:2694–2708. 10.1093/nar/gkz1215 PubMed DOI PMC

Lang  AS, Beatty  JT. 2007. Importance of widespread gene transfer agent genes in α-proteobacteria. Trends Microbiol. 15:54–62. 10.1016/J.TIM.2006.12.001 PubMed DOI

Lang  AS, Westbye  AB, Beatty  JT. 2017. The distribution, evolution, and roles of gene transfer agents in prokaryotic genetic exchange. Annu Rev Virol. 4:87–104. 10.1146/annurev-virology-101416-041624 PubMed DOI

Lang  AS, Zhaxybayeva  O, Beatty  JT. 2012. Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol. 10:472–482. 10.1038/nrmicro2802 PubMed DOI PMC

Leiman  PG, et al.  2009. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A. 106:4154–4159. 10.1073/pnas.0813360106 PubMed DOI PMC

McCutcheon  JP, Moran  NA. 2012. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 10:13–26. 10.1038/nrmicro2670 PubMed DOI

McDaniel  LD, et al.  2010. High frequency of horizontal gene transfer in the oceans. Science (80-.)  330:50. 10.1126/SCIENCE.1192243 PubMed DOI

McHugh  CA, et al.  2014. A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress. EMBO J. 33:1896–1911. 10.15252/embj.201488566 PubMed DOI PMC

Midha  S, Rigden  DJ, Siozios  S, Hurst  GDD, Jackson  AP. 2021. Bodo saltans (Kinetoplastida) is dependent on a novel Paracaedibacter-like endosymbiont that possesses multiple putative toxin-antitoxin systems. ISME J. 15:1680–1694. 10.1038/s41396-020-00879-6 PubMed DOI PMC

Moran  NA, et al.  1996. Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci U S A. 93:2873–2878. 10.1073/pnas.93.7.2873 PubMed DOI PMC

Muñoz-Gómez  SA, et al.  2019. An updated phylogeny of the Alphaproteobacteria reveals that the parasitic Rickettsiales and Holosporales have independent origins. eLife  8:42535. 10.7554/eLife.42535 PubMed DOI PMC

Naito  M, Pawlowska  TE. 2016. Defying Muller’s ratchet: ancient heritable endobacteria escape extinction through retention of recombination and genome plasticity. mBio  7:e02057-1. 10.1128/mBio.02057-15 PubMed DOI PMC

Nunan  LM, Pantoja  CR, Gomez-Jimenez  S, Lightner  DV. 2013. “Candidatus Hepatobacter penaei,” an intracellular pathogenic enteric bacterium in the hepatopancreas of the marine shrimp Penaeus vannamei (Crustacea: Decapoda). Appl Environ Microbiol. 79:1407–1409. 10.1128/AEM.02425-12 PubMed DOI PMC

Picelli  S, et al.  2014. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 9:171–181. 10.1038/nprot.2014.006 PubMed DOI

Pilgrim  J, et al.  2017. Torix group Rickettsia are widespread in Culicoides biting midges (Diptera: Ceratopogonidae), reach high frequency and carry unique genomic features. Environ Microbiol. 19:4238–4255. 10.1111/1462-2920.13887 PubMed DOI PMC

Prokopchuk  G, et al.  2019. Morphological, ultrastructural, motility and evolutionary characterization of two new Hemistasiidae species. Protist  170:259–282. 10.1016/J.PROTIS.2019.04.001 PubMed DOI

Prokopchuk  G, et al.  2022. Trophic flexibility of marine diplonemids – switching from osmotrophy to bacterivory. ISME J. 16:1409–1419. 10.1038/s41396-022-01192-0 PubMed DOI PMC

Québatte  M, Dehio  C. 2019. Bartonella gene transfer agent: evolution, function, and proposed role in host adaptation. Cell Microbiol. 21:e13068. 10.1111/CMI.13068 PubMed DOI PMC

Russell  SL, Cavanaugh  CM. 2017. Intrahost genetic diversity of bacterial symbionts exhibits evidence of mixed infections and recombinant haplotypes. Mol Biol Evol. 34:2747–2761. 10.1093/MOLBEV/MSX188 PubMed DOI

Sassera  D, et al.  2006. “Candidatus Midichloria mitochondrii”, an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. Int J Syst Evol Microbiol. 56:2535–2540. 10.1099/ijs.0.64386-0 PubMed DOI

Schulz  F, et al.  2014. Life in an unusual intracellular niche: a bacterial symbiont infecting the nucleus of amoebae. ISME J. 8:1634–1644. 10.1038/ismej.2014.5 PubMed DOI PMC

Schulz  F, et al.  2016. A Rickettsiales symbiont of amoebae with ancient features. Environ Microbiol. 18:2326–2342. 10.1111/1462-2920.12881 PubMed DOI

Shakya  M, Soucy  SM, Zhaxybayeva  O. 2017. Insights into origin and evolution of α-proteobacterial gene transfer agents. Virus Evol. 3:vex036. 10.1093/VE/VEX036 PubMed DOI PMC

Sherlock  D, Leong  JX, Fogg  PCM. 2019. Identification of the first gene transfer agent (GTA) small terminase in Rhodobacter capsulatus and its role in GTA production and packaging of DNA. J Virol. 93:e01328019. 10.1128/JVI.01328-19 PubMed DOI PMC

Shikuma  NJ, et al.  2014. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science  343:529–533. 10.1126/science.1246794 PubMed DOI PMC

Tashyreva  D, et al.  2018. Life cycle, ultrastructure, and phylogeny of new diplonemids and their endosymbiotic bacteria. mBio  9:e02447-17. 10.1128/mBio.02447-17 PubMed DOI PMC

Westbye  AB, et al.  2013. Phosphate concentration and the putative sensor kinase protein CckA modulate cell lysis and release of the Rhodobacter capsulatus gene transfer agent. J Bacteriol. 195:5025–5040. 10.1128/JB.00669-13/SUPPL_FILE/ZJB999092877SO1.PDF PubMed DOI PMC

Westbye  AB, Beatty  JT, Lang  AS. 2017. Guaranteeing a captive audience: coordinated regulation of gene transfer agent (GTA) production and recipient capability by cellular regulators. Curr Opin Microbiol. 38:122–129. 10.1016/J.MIB.2017.05.003 PubMed DOI

Yurchenko  T, et al.  2018. A gene transfer event suggests a long-term partnership between eustigmatophyte algae and a novel lineage of endosymbiotic bacteria. ISME J. 12:2163–2175. 10.1038/s41396-018-0177-y PubMed DOI PMC

Zaila  KE, et al.  2017. Diversity and universality of endosymbiotic Rickettsia in the fish parasite Ichthyophthirius multifiliis. Front Microbiol. 8:189. 10.3389/fmicb.2017.00189 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace