Gene Transfer Agents in Bacterial Endosymbionts of Microbial Eukaryotes
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35738252
PubMed Central
PMC9254644
DOI
10.1093/gbe/evac099
PII: 6615375
Knihovny.cz E-zdroje
- Klíčová slova
- Holosporaceae, Rickettsiales, endosymbiosis, evolution, gene transfer agent, protist,
- MeSH
- Bacteria genetika MeSH
- Eukaryota * genetika MeSH
- fylogeneze MeSH
- přenos genů horizontální MeSH
- symbióza genetika MeSH
- viry * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Gene transfer agents (GTAs) are virus-like structures that package and transfer prokaryotic DNA from donor to recipient prokaryotic cells. Here, we describe widespread GTA gene clusters in the highly reduced genomes of bacterial endosymbionts from microbial eukaryotes (protists). Homologs of the GTA capsid and portal complexes were initially found to be present in several highly reduced alphaproteobacterial endosymbionts of diplonemid protists (Rickettsiales and Rhodospirillales). Evidence of GTA expression was found in polyA-enriched metatranscriptomes of the diplonemid hosts and their endosymbionts, but due to biases in the polyA-enrichment methods, levels of GTA expression could not be determined. Examining the genomes of closely related bacteria revealed that the pattern of retained GTA head/capsid complexes with missing tail components was common across Rickettsiales and Holosporaceae (Rhodospirillales), all obligate symbionts with a wide variety of eukaryotic hosts. A dN/dS analysis of Rickettsiales and Holosporaceae symbionts revealed that purifying selection is likely the main driver of GTA evolution in symbionts, suggesting they remain functional, but the ecological function of GTAs in bacterial symbionts is unknown. In particular, it is unclear how increasing horizontal gene transfer in small, largely clonal endosymbiont populations can explain GTA retention, and, therefore, the structures may have been repurposed in endosymbionts for host interactions. Either way, their widespread retention and conservation in endosymbionts of diverse eukaryotes suggests an important role in symbiosis.
Department of Botany University of British Columbia Vancouver Canada
Faculty of Sciences University of South Bohemia České Budějovice Czech Republic
Hakai Institute Quadra Island British Columbia Canada
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol. 215:403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Bárdy P, et al. 2020. Structure and mechanism of DNA delivery of a gene transfer agent. Nat Commun. 11:303. 10.1038/s41467-020-16669-9 PubMed DOI PMC
Bordenstein SR, Bordenstein SR. 2016. Eukaryotic association module in phage WO genomes from PubMed DOI PMC
Castelli M, et al. 2019. PubMed DOI PMC
Castelli M, et al. 2021. ‘ PubMed DOI
Castelli M, et al. 2022. ‘ PubMed DOI
Christensen S, Serbus LR. 2020. Gene transfer agents in symbiotic microbes. In: Kloc M, editor. Symbiosis: cellular, molecular, medical and evolutionary aspects. Vol. 69. Springer. p. 25–76. PubMed
Dale C, Wang B, Moran N, Ochman H. 2003. Loss of DNA recombinational repair enzymes in the initial stages of genome degeneration. Mol Biol Evol. 20:1188–1194. 10.1093/molbev/msg138 PubMed DOI
Dohra H, Tanaka K, Suzuki T, Fujishima M, Suzuki H. 2014. Draft genome sequences of three PubMed DOI
Ericson CF, et al. 2019. A contractile injection system stimulates tubeworm metamorphosis by translocating a proteinaceous effector. eLife 8:46845. 10.7554/ELIFE.46845 PubMed DOI PMC
Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39:W29–W37. 10.1093/nar/gkr367 PubMed DOI PMC
Floriano AM, et al. 2018. The genome sequence of “ PubMed DOI PMC
Fogg PCM, Westbye AB, Beatty JT. 2012. One for all or all for one: heterogeneous expression and host cell lysis are key to gene transfer agent activity in PubMed DOI PMC
Garushyants SK, et al. 2018. Comparative genomic analysis of PubMed DOI PMC
George EE, et al. 2020. Highly reduced genomes of protist endosymbionts show evolutionary convergence. Curr Biol. 30:925–933.e3. 10.1016/j.cub.2019.12.070 PubMed DOI
Ghequire MGK, De Mot R. 2015. The tailocin tale: peeling off phage tails. Trends Microbiol. 23:587–590. 10.1016/J.TIM.2015.07.011 PubMed DOI
Giannotti D, Boscaro V, Husnik F, Vannini C, Keeling PJ. 2022. The ‘other’ PubMed DOI PMC
Husnik F, et al. 2021. Bacterial and archaeal symbioses with protists. Curr Biol. 31:R862–R877. 10.1016/J.CUB.2021.05.049 PubMed DOI
Hynes AP, et al. 2016. Functional and evolutionary characterization of a gene transfer agent’s multilocus “genome”. Mol Biol Evol. 33:2530–2543. 10.1093/MOLBEV/MSW125 PubMed DOI PMC
Hynes AP, Mercer RG, Watton DE, Buckley CB, Lang AS. 2012. DNA packaging bias and differential expression of gene transfer agent genes within a population during production and release of the Rhodobacter capsulatus gene transfer agent, RcGTA. Mol Microbiol. 85:314–325. 10.1111/J.1365-2958.2012.08113.X PubMed DOI
Kaur B, et al. 2020. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res. 48:2694–2708. 10.1093/nar/gkz1215 PubMed DOI PMC
Lang AS, Beatty JT. 2007. Importance of widespread gene transfer agent genes in α-proteobacteria. Trends Microbiol. 15:54–62. 10.1016/J.TIM.2006.12.001 PubMed DOI
Lang AS, Westbye AB, Beatty JT. 2017. The distribution, evolution, and roles of gene transfer agents in prokaryotic genetic exchange. Annu Rev Virol. 4:87–104. 10.1146/annurev-virology-101416-041624 PubMed DOI
Lang AS, Zhaxybayeva O, Beatty JT. 2012. Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol. 10:472–482. 10.1038/nrmicro2802 PubMed DOI PMC
Leiman PG, et al. 2009. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A. 106:4154–4159. 10.1073/pnas.0813360106 PubMed DOI PMC
McCutcheon JP, Moran NA. 2012. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 10:13–26. 10.1038/nrmicro2670 PubMed DOI
McDaniel LD, et al. 2010. High frequency of horizontal gene transfer in the oceans. Science (80-.) 330:50. 10.1126/SCIENCE.1192243 PubMed DOI
McHugh CA, et al. 2014. A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress. EMBO J. 33:1896–1911. 10.15252/embj.201488566 PubMed DOI PMC
Midha S, Rigden DJ, Siozios S, Hurst GDD, Jackson AP. 2021. PubMed DOI PMC
Moran NA, et al. 1996. Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci U S A. 93:2873–2878. 10.1073/pnas.93.7.2873 PubMed DOI PMC
Muñoz-Gómez SA, et al. 2019. An updated phylogeny of the PubMed DOI PMC
Naito M, Pawlowska TE. 2016. Defying Muller’s ratchet: ancient heritable endobacteria escape extinction through retention of recombination and genome plasticity. mBio 7:e02057-1. 10.1128/mBio.02057-15 PubMed DOI PMC
Nunan LM, Pantoja CR, Gomez-Jimenez S, Lightner DV. 2013. “ PubMed DOI PMC
Picelli S, et al. 2014. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 9:171–181. 10.1038/nprot.2014.006 PubMed DOI
Pilgrim J, et al. 2017. Torix group PubMed DOI PMC
Prokopchuk G, et al. 2019. Morphological, ultrastructural, motility and evolutionary characterization of two new Hemistasiidae species. Protist 170:259–282. 10.1016/J.PROTIS.2019.04.001 PubMed DOI
Prokopchuk G, et al. 2022. Trophic flexibility of marine diplonemids – switching from osmotrophy to bacterivory. ISME J. 16:1409–1419. 10.1038/s41396-022-01192-0 PubMed DOI PMC
Québatte M, Dehio C. 2019. PubMed DOI PMC
Russell SL, Cavanaugh CM. 2017. Intrahost genetic diversity of bacterial symbionts exhibits evidence of mixed infections and recombinant haplotypes. Mol Biol Evol. 34:2747–2761. 10.1093/MOLBEV/MSX188 PubMed DOI
Sassera D, et al. 2006. “ PubMed DOI
Schulz F, et al. 2014. Life in an unusual intracellular niche: a bacterial symbiont infecting the nucleus of amoebae. ISME J. 8:1634–1644. 10.1038/ismej.2014.5 PubMed DOI PMC
Schulz F, et al. 2016. A PubMed DOI
Shakya M, Soucy SM, Zhaxybayeva O. 2017. Insights into origin and evolution of α-proteobacterial gene transfer agents. Virus Evol. 3:vex036. 10.1093/VE/VEX036 PubMed DOI PMC
Sherlock D, Leong JX, Fogg PCM. 2019. Identification of the first gene transfer agent (GTA) small terminase in Rhodobacter capsulatus and its role in GTA production and packaging of DNA. J Virol. 93:e01328019. 10.1128/JVI.01328-19 PubMed DOI PMC
Shikuma NJ, et al. 2014. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science 343:529–533. 10.1126/science.1246794 PubMed DOI PMC
Tashyreva D, et al. 2018. Life cycle, ultrastructure, and phylogeny of new diplonemids and their endosymbiotic bacteria. mBio 9:e02447-17. 10.1128/mBio.02447-17 PubMed DOI PMC
Westbye AB, et al. 2013. Phosphate concentration and the putative sensor kinase protein CckA modulate cell lysis and release of the PubMed DOI PMC
Westbye AB, Beatty JT, Lang AS. 2017. Guaranteeing a captive audience: coordinated regulation of gene transfer agent (GTA) production and recipient capability by cellular regulators. Curr Opin Microbiol. 38:122–129. 10.1016/J.MIB.2017.05.003 PubMed DOI
Yurchenko T, et al. 2018. A gene transfer event suggests a long-term partnership between eustigmatophyte algae and a novel lineage of endosymbiotic bacteria. ISME J. 12:2163–2175. 10.1038/s41396-018-0177-y PubMed DOI PMC
Zaila KE, et al. 2017. Diversity and universality of endosymbiotic PubMed DOI PMC
On the possibility of yet a third kinetochore system in the protist phylum Euglenozoa