Bacterial proteins pinpoint a single eukaryotic root

. 2015 Feb 17 ; 112 (7) : E693-9. [epub] 20150202

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25646484

Grantová podpora
55007424 Howard Hughes Medical Institute - United States

The large phylogenetic distance separating eukaryotic genes and their archaeal orthologs has prevented identification of the position of the eukaryotic root in phylogenomic studies. Recently, an innovative approach has been proposed to circumvent this issue: the use as phylogenetic markers of proteins that have been transferred from bacterial donor sources to eukaryotes, after their emergence from Archaea. Using this approach, two recent independent studies have built phylogenomic datasets based on bacterial sequences, leading to different predictions of the eukaryotic root. Taking advantage of additional genome sequences from the jakobid Andalucia godoyi and the two known malawimonad species (Malawimonas jakobiformis and Malawimonas californiana), we reanalyzed these two phylogenomic datasets. We show that both datasets pinpoint the same phylogenetic position of the eukaryotic root that is between "Unikonta" and "Bikonta," with malawimonad and collodictyonid lineages on the Unikonta side of the root. Our results firmly indicate that (i) the supergroup Excavata is not monophyletic and (ii) the last common ancestor of eukaryotes was a biflagellate organism. Based on our results, we propose to rename the two major eukaryotic groups Unikonta and Bikonta as Opimoda and Diphoda, respectively.

Zobrazit více v PubMed

Brinkmann H, Philippe H. The diversity of eukaryotes and the root of the eukaryotic tree. Adv Exp Med Biol. 2007;607:20–37. PubMed

Roger AJ, Simpson AG. Evolution: Revisiting the root of the eukaryote tree. Curr Biol. 2009;19(4):R165–R167. PubMed

Burki F. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol. 2014;6(5):a016147. PubMed PMC

Williams TA. Evolution: Rooting the eukaryotic tree of life. Curr Biol. 2014;24(4):R151–R152. PubMed

Koonin EV. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol. 2010;11(5):209. PubMed PMC

Guy L, Saw JH, Ettema TJ. The archaeal legacy of eukaryotes: A phylogenomic perspective. Cold Spring Harb Perspect Biol. 2014;6(10):a016022. PubMed PMC

Rochette NC, Brochier-Armanet C, Gouy M. Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes. Mol Biol Evol. 2014;31(4):832–845. PubMed PMC

Bapteste E, et al. The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci USA. 2002;99(3):1414–1419. PubMed PMC

Brinkmann H, van der Giezen M, Zhou Y, Poncelin de Raucourt G, Philippe H. An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Syst Biol. 2005;54(5):743–757. PubMed

Arisue N, Hasegawa M, Hashimoto T. Root of the Eukaryota tree as inferred from combined maximum likelihood analyses of multiple molecular sequence data. Mol Biol Evol. 2005;22(3):409–420. PubMed

Ciccarelli FD, et al. Toward automatic reconstruction of a highly resolved tree of life. Science. 2006;311(5765):1283–1287. PubMed

Williams TA, Embley TM. Archaeal “dark matter” and the origin of eukaryotes. Genome Biol Evol. 2014;6(3):474–481. PubMed PMC

Stechmann A, Cavalier-Smith T. The root of the eukaryote tree pinpointed. Burr Biol. 2003;13(17):R665–R666. PubMed

Richards TA, Cavalier-Smith T. Myosin domain evolution and the primary divergence of eukaryotes. Nature. 2005;436(7054):1113–1118. PubMed

Adl SM, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59(5):429–493. PubMed PMC

Cavalier-Smith T. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol Lett. 2010;6(3):342–345. PubMed PMC

Wideman JG, Gawryluk RM, Gray MW, Dacks JB. The ancient and widespread nature of the ER-mitochondria encounter structure. Mol Biol Evol. 2013;30(9):2044–2049. PubMed

Rogozin IB, Basu MK, Csürös M, Koonin EV. Analysis of rare genomic changes does not support the unikont-bikont phylogeny and suggests cyanobacterial symbiosis as the point of primary radiation of eukaryotes. Genome Biol Evol. 2009;1:99–113. PubMed PMC

Katz LA, Grant JR, Parfrey LW, Burleigh JG. Turning the crown upside down: Gene tree parsimony roots the eukaryotic tree of life. Syst Biol. 2012;61(4):653–660. PubMed PMC

Bapteste E, Philippe H. The potential value of indels as phylogenetic markers: Position of trichomonads as a case study. Mol Biol Evol. 2002;19(6):972–977. PubMed

Delsuc F, Brinkmann H, Philippe H. Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet. 2005;6(5):361–375. PubMed

Rodríguez-Ezpeleta N, et al. Detecting and overcoming systematic errors in genome-scale phylogenies. Syst Biol. 2007;56(3):389–399. PubMed

Leonard G, Richards TA. Genome-scale comparative analysis of gene fusions, gene fissions, and the fungal tree of life. Proc Natl Acad Sci USA. 2012;109(52):21402–21407. PubMed PMC

Andersson JO. Gene transfer and diversification of microbial eukaryotes. Annu Rev Microbiol. 2009;63:177–193. PubMed

Andersson SG, Karlberg O, Canback B, Kurland CG. On the origin of mitochondria: A genomics perspective. Philos Trans R Soc Lond B Biol Sci. 2003;358(1429):165–177. discussion 177–169. PubMed PMC

Gray MW, Burger G, Lang BF. The origin and early evolution of mitochondria. Genome Biol. 2001;2(6) reviews1018.1–reviews1018.5. PubMed PMC

Derelle R, Lang BF. Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol Biol Evol. 2012;29(4):1277–1289. PubMed

He D, et al. An alternative root for the eukaryote tree of life. Curr Biol. 2014;24(4):465–470. PubMed

Goremykin VV, Nikiforova SV, Bininda-Emonds OR. Automated removal of noisy data in phylogenomic analyses. J Mol Evol. 2010;71(5-6):319–331. PubMed

Zhao S, Shalchian-Tabrizi K, Klaveness D. Sulcozoa revealed as a paraphyletic group in mitochondrial phylogenomics. Mol Phylogenet Evol. 2013;69(3):462–468. PubMed

Sonnhammer EL, Koonin EV. Orthology, paralogy and proposed classification for paralog subtypes. Trends Genet. 2002;18(12):619–620. PubMed

Foster PG, Cox CJ, Embley TM. The primary divisions of life: A phylogenomic approach employing composition-heterogeneous methods. Philos Trans R Soc Lond B Biol Sci. 2009;364(1527):2197–2207. PubMed PMC

Leigh JW, Schliep K, Lopez P, Bapteste E. Let them fall where they may: Congruence analysis in massive phylogenetically messy data sets. Mol Biol Evol. 2011;28(10):2773–2785. PubMed

de Vienne DM, Ollier S, Aguileta G. Phylo-MCOA: A fast and efficient method to detect outlier genes and species in phylogenomics using multiple co-inertia analysis. Mol Biol Evol. 2012;29(6):1587–1598. PubMed

Brown MW, Kolisko M, Silberman JD, Roger AJ. Aggregative multicellularity evolved independently in the eukaryotic supergroup Rhizaria. Burr Biol. 2012;22(12):1123–1127. PubMed

Brown MW, et al. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proc Biol Sci. 2013;280(1769):20131755. PubMed PMC

Burki F, Okamoto N, Pombert JF, Keeling PJ. The evolutionary history of haptophytes and cryptophytes: Phylogenomic evidence for separate origins. Proc Biol Sci. 2012;279(1736):2246–2254. PubMed PMC

Zhao S, et al. Collodictyon: An ancient lineage in the tree of eukaryotes. Mol Biol Evol. 2012;29(6):1557–1568. PubMed PMC

Kamikawa R, et al. Gene content evolution in Discobid mitochondria deduced from the phylogenetic position and complete mitochondrial genome of Tsukubamonas globosa. Genome Biol Evol. 2014;6(2):306–315. PubMed PMC

Yabuki A, et al. Palpitomonas bilix represents a basal cryptist lineage: Insight into the character evolution in Cryptista. Sci Rep. 2014;4:4641. PubMed PMC

Salichos L, Rokas A. Inferring ancient divergences requires genes with strong phylogenetic signals. Nature. 2013;497(7449):327–331. PubMed

Brugerolle G, Bricheux G, Philippe H, Coffea G. Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) form a new family of flagellates (Collodictyonidae) with tubular mitochondrial cristae that is phylogenetically distant from other flagellate groups. Protist. 2002;153(1):59–70. PubMed

Hampl V, et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci USA. 2009;106(10):3859–3864. PubMed PMC

Simpson AG. Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota) Int J Syst Evol Microbiol. 2003;53(Pt 6):1759–1777. PubMed

Cavalier-Smith T. The neomuran revolution and phagotrophic origin of eukaryotes and cilia in the light of intracellular coevolution and a revised tree of life. Cold Spring Harb Perspect Biol. 2014;6(9):a016006. PubMed PMC

Yubuki N, Leander BS. Evolution of microtubule organizing centers across the tree of eukaryotes. Plant J. 2013;75(2):230–244. PubMed

Cavalier-Smith T. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur J Protistol. 2013;49(2):115–178. PubMed

Paps J, Medina-Chacón LA, Marshall W, Suga H, Ruiz-Trillo I. Molecular phylogeny of unikonts: New insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts. Protist. 2013;164(1):2–12. PubMed PMC

Simpson JT, et al. ABySS: A parallel assembler for short read sequence data. Genome Res. 2009;19(6):1117–1123. PubMed PMC

Butler J, et al. ALLPATHS: De novo assembly of whole-genome shotgun microreads. Genome Res. 2008;18(5):810–820. PubMed PMC

Hoff KJ, Stanke M. WebAUGUSTUS: A web service for training AUGUSTUS and predicting genes in eukaryotes. Nucleic Acids Res. 2013;41(web server issue):W123–W128. PubMed PMC

Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000;302(1):205–217. PubMed

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–1973. PubMed PMC

Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17(4):540–552. PubMed

Lartillot N, Lepage T, Blanquart S. PhyloBayes 3: A Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009;25(17):2286–2288. PubMed

Huerta-Cepas J, Dopazo J, Gabaldón T. ETE: A python Environment for Tree Exploration. BMC Bioinformatics. 2010;11:24. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

On the possibility of yet a third kinetochore system in the protist phylum Euglenozoa

. 2024 Dec 11 ; 15 (12) : e0293624. [epub] 20241030

Reconstructing the last common ancestor of all eukaryotes

. 2024 Nov ; 22 (11) : e3002917. [epub] 20241125

Evolutionary origins of the lysosome-related organelle sorting machinery reveal ancient homology in post-endosome trafficking pathways

. 2024 Oct 22 ; 121 (43) : e2403601121. [epub] 20241017

Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events

Encyclopedia of Family A DNA Polymerases Localized in Organelles: Evolutionary Contribution of Bacteria Including the Proto-Mitochondrion

. 2024 Feb 01 ; 41 (2) : .

Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes

. 2023 May 04 ; 21 (1) : 99. [epub] 20230504

Telomeres and Their Neighbors

. 2022 Sep 16 ; 13 (9) : . [epub] 20220916

Phylogenetic profiling and cellular analyses of ARL16 reveal roles in traffic of IFT140 and INPP5E

. 2022 Apr 01 ; 33 (4) : ar33. [epub] 20220223

A Eukaryote-Wide Perspective on the Diversity and Evolution of the ARF GTPase Protein Family

. 2021 Aug 03 ; 13 (8) : .

Vestiges of the Bacterial Signal Recognition Particle-Based Protein Targeting in Mitochondria

. 2021 Jul 29 ; 38 (8) : 3170-3187.

Analysis of diverse eukaryotes suggests the existence of an ancestral mitochondrial apparatus derived from the bacterial type II secretion system

. 2021 May 19 ; 12 (1) : 2947. [epub] 20210519

The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome

. 2020 Mar 02 ; 18 (1) : 22. [epub] 20200302

Telomerase RNAs in land plants

. 2019 Oct 10 ; 47 (18) : 9842-9856.

Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis

. 2019 Jan ; 17 (1) : e3000098. [epub] 20190104

Evolution of mitochondrial TAT translocases illustrates the loss of bacterial protein transport machines in mitochondria

. 2018 Nov 22 ; 16 (1) : 141. [epub] 20181122

Fe-S cluster assembly in the supergroup Excavata

. 2018 Jun ; 23 (4) : 521-541. [epub] 20180405

Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes

. 2018 Apr ; 5 (4) : 171707. [epub] 20180404

Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase

. 2018 Mar 27 ; 8 (1) : 5239. [epub] 20180327

A sophisticated, differentiated Golgi in the ancestor of eukaryotes

. 2018 Mar 07 ; 16 (1) : 27. [epub] 20180307

Nuclear genetic codes with a different meaning of the UAG and the UAA codon

. 2017 Feb 13 ; 15 (1) : 8. [epub] 20170213

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace