Bacterial proteins pinpoint a single eukaryotic root
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
55007424
Howard Hughes Medical Institute - United States
PubMed
25646484
PubMed Central
PMC4343179
DOI
10.1073/pnas.1420657112
PII: 1420657112
Knihovny.cz E-zdroje
- Klíčová slova
- Diphoda, LECA, Opimoda, eukaryote phylogeny, phylogenomics,
- MeSH
- Bacteria klasifikace genetika metabolismus MeSH
- bakteriální geny MeSH
- bakteriální proteiny fyziologie MeSH
- datové soubory jako téma MeSH
- Eukaryota * MeSH
- fylogeneze MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
The large phylogenetic distance separating eukaryotic genes and their archaeal orthologs has prevented identification of the position of the eukaryotic root in phylogenomic studies. Recently, an innovative approach has been proposed to circumvent this issue: the use as phylogenetic markers of proteins that have been transferred from bacterial donor sources to eukaryotes, after their emergence from Archaea. Using this approach, two recent independent studies have built phylogenomic datasets based on bacterial sequences, leading to different predictions of the eukaryotic root. Taking advantage of additional genome sequences from the jakobid Andalucia godoyi and the two known malawimonad species (Malawimonas jakobiformis and Malawimonas californiana), we reanalyzed these two phylogenomic datasets. We show that both datasets pinpoint the same phylogenetic position of the eukaryotic root that is between "Unikonta" and "Bikonta," with malawimonad and collodictyonid lineages on the Unikonta side of the root. Our results firmly indicate that (i) the supergroup Excavata is not monophyletic and (ii) the last common ancestor of eukaryotes was a biflagellate organism. Based on our results, we propose to rename the two major eukaryotic groups Unikonta and Bikonta as Opimoda and Diphoda, respectively.
Centre for Genomic Regulation 08003 Barcelona Spain; Universitat Pompeu Fabra 08003 Barcelona Spain;
Zobrazit více v PubMed
Brinkmann H, Philippe H. The diversity of eukaryotes and the root of the eukaryotic tree. Adv Exp Med Biol. 2007;607:20–37. PubMed
Roger AJ, Simpson AG. Evolution: Revisiting the root of the eukaryote tree. Curr Biol. 2009;19(4):R165–R167. PubMed
Burki F. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol. 2014;6(5):a016147. PubMed PMC
Williams TA. Evolution: Rooting the eukaryotic tree of life. Curr Biol. 2014;24(4):R151–R152. PubMed
Koonin EV. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol. 2010;11(5):209. PubMed PMC
Guy L, Saw JH, Ettema TJ. The archaeal legacy of eukaryotes: A phylogenomic perspective. Cold Spring Harb Perspect Biol. 2014;6(10):a016022. PubMed PMC
Rochette NC, Brochier-Armanet C, Gouy M. Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes. Mol Biol Evol. 2014;31(4):832–845. PubMed PMC
Bapteste E, et al. The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci USA. 2002;99(3):1414–1419. PubMed PMC
Brinkmann H, van der Giezen M, Zhou Y, Poncelin de Raucourt G, Philippe H. An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Syst Biol. 2005;54(5):743–757. PubMed
Arisue N, Hasegawa M, Hashimoto T. Root of the Eukaryota tree as inferred from combined maximum likelihood analyses of multiple molecular sequence data. Mol Biol Evol. 2005;22(3):409–420. PubMed
Ciccarelli FD, et al. Toward automatic reconstruction of a highly resolved tree of life. Science. 2006;311(5765):1283–1287. PubMed
Williams TA, Embley TM. Archaeal “dark matter” and the origin of eukaryotes. Genome Biol Evol. 2014;6(3):474–481. PubMed PMC
Stechmann A, Cavalier-Smith T. The root of the eukaryote tree pinpointed. Burr Biol. 2003;13(17):R665–R666. PubMed
Richards TA, Cavalier-Smith T. Myosin domain evolution and the primary divergence of eukaryotes. Nature. 2005;436(7054):1113–1118. PubMed
Adl SM, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59(5):429–493. PubMed PMC
Cavalier-Smith T. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol Lett. 2010;6(3):342–345. PubMed PMC
Wideman JG, Gawryluk RM, Gray MW, Dacks JB. The ancient and widespread nature of the ER-mitochondria encounter structure. Mol Biol Evol. 2013;30(9):2044–2049. PubMed
Rogozin IB, Basu MK, Csürös M, Koonin EV. Analysis of rare genomic changes does not support the unikont-bikont phylogeny and suggests cyanobacterial symbiosis as the point of primary radiation of eukaryotes. Genome Biol Evol. 2009;1:99–113. PubMed PMC
Katz LA, Grant JR, Parfrey LW, Burleigh JG. Turning the crown upside down: Gene tree parsimony roots the eukaryotic tree of life. Syst Biol. 2012;61(4):653–660. PubMed PMC
Bapteste E, Philippe H. The potential value of indels as phylogenetic markers: Position of trichomonads as a case study. Mol Biol Evol. 2002;19(6):972–977. PubMed
Delsuc F, Brinkmann H, Philippe H. Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet. 2005;6(5):361–375. PubMed
Rodríguez-Ezpeleta N, et al. Detecting and overcoming systematic errors in genome-scale phylogenies. Syst Biol. 2007;56(3):389–399. PubMed
Leonard G, Richards TA. Genome-scale comparative analysis of gene fusions, gene fissions, and the fungal tree of life. Proc Natl Acad Sci USA. 2012;109(52):21402–21407. PubMed PMC
Andersson JO. Gene transfer and diversification of microbial eukaryotes. Annu Rev Microbiol. 2009;63:177–193. PubMed
Andersson SG, Karlberg O, Canback B, Kurland CG. On the origin of mitochondria: A genomics perspective. Philos Trans R Soc Lond B Biol Sci. 2003;358(1429):165–177. discussion 177–169. PubMed PMC
Gray MW, Burger G, Lang BF. The origin and early evolution of mitochondria. Genome Biol. 2001;2(6) reviews1018.1–reviews1018.5. PubMed PMC
Derelle R, Lang BF. Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol Biol Evol. 2012;29(4):1277–1289. PubMed
He D, et al. An alternative root for the eukaryote tree of life. Curr Biol. 2014;24(4):465–470. PubMed
Goremykin VV, Nikiforova SV, Bininda-Emonds OR. Automated removal of noisy data in phylogenomic analyses. J Mol Evol. 2010;71(5-6):319–331. PubMed
Zhao S, Shalchian-Tabrizi K, Klaveness D. Sulcozoa revealed as a paraphyletic group in mitochondrial phylogenomics. Mol Phylogenet Evol. 2013;69(3):462–468. PubMed
Sonnhammer EL, Koonin EV. Orthology, paralogy and proposed classification for paralog subtypes. Trends Genet. 2002;18(12):619–620. PubMed
Foster PG, Cox CJ, Embley TM. The primary divisions of life: A phylogenomic approach employing composition-heterogeneous methods. Philos Trans R Soc Lond B Biol Sci. 2009;364(1527):2197–2207. PubMed PMC
Leigh JW, Schliep K, Lopez P, Bapteste E. Let them fall where they may: Congruence analysis in massive phylogenetically messy data sets. Mol Biol Evol. 2011;28(10):2773–2785. PubMed
de Vienne DM, Ollier S, Aguileta G. Phylo-MCOA: A fast and efficient method to detect outlier genes and species in phylogenomics using multiple co-inertia analysis. Mol Biol Evol. 2012;29(6):1587–1598. PubMed
Brown MW, Kolisko M, Silberman JD, Roger AJ. Aggregative multicellularity evolved independently in the eukaryotic supergroup Rhizaria. Burr Biol. 2012;22(12):1123–1127. PubMed
Brown MW, et al. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proc Biol Sci. 2013;280(1769):20131755. PubMed PMC
Burki F, Okamoto N, Pombert JF, Keeling PJ. The evolutionary history of haptophytes and cryptophytes: Phylogenomic evidence for separate origins. Proc Biol Sci. 2012;279(1736):2246–2254. PubMed PMC
Zhao S, et al. Collodictyon: An ancient lineage in the tree of eukaryotes. Mol Biol Evol. 2012;29(6):1557–1568. PubMed PMC
Kamikawa R, et al. Gene content evolution in Discobid mitochondria deduced from the phylogenetic position and complete mitochondrial genome of Tsukubamonas globosa. Genome Biol Evol. 2014;6(2):306–315. PubMed PMC
Yabuki A, et al. Palpitomonas bilix represents a basal cryptist lineage: Insight into the character evolution in Cryptista. Sci Rep. 2014;4:4641. PubMed PMC
Salichos L, Rokas A. Inferring ancient divergences requires genes with strong phylogenetic signals. Nature. 2013;497(7449):327–331. PubMed
Brugerolle G, Bricheux G, Philippe H, Coffea G. Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) form a new family of flagellates (Collodictyonidae) with tubular mitochondrial cristae that is phylogenetically distant from other flagellate groups. Protist. 2002;153(1):59–70. PubMed
Hampl V, et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci USA. 2009;106(10):3859–3864. PubMed PMC
Simpson AG. Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota) Int J Syst Evol Microbiol. 2003;53(Pt 6):1759–1777. PubMed
Cavalier-Smith T. The neomuran revolution and phagotrophic origin of eukaryotes and cilia in the light of intracellular coevolution and a revised tree of life. Cold Spring Harb Perspect Biol. 2014;6(9):a016006. PubMed PMC
Yubuki N, Leander BS. Evolution of microtubule organizing centers across the tree of eukaryotes. Plant J. 2013;75(2):230–244. PubMed
Cavalier-Smith T. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur J Protistol. 2013;49(2):115–178. PubMed
Paps J, Medina-Chacón LA, Marshall W, Suga H, Ruiz-Trillo I. Molecular phylogeny of unikonts: New insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts. Protist. 2013;164(1):2–12. PubMed PMC
Simpson JT, et al. ABySS: A parallel assembler for short read sequence data. Genome Res. 2009;19(6):1117–1123. PubMed PMC
Butler J, et al. ALLPATHS: De novo assembly of whole-genome shotgun microreads. Genome Res. 2008;18(5):810–820. PubMed PMC
Hoff KJ, Stanke M. WebAUGUSTUS: A web service for training AUGUSTUS and predicting genes in eukaryotes. Nucleic Acids Res. 2013;41(web server issue):W123–W128. PubMed PMC
Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000;302(1):205–217. PubMed
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–1973. PubMed PMC
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17(4):540–552. PubMed
Lartillot N, Lepage T, Blanquart S. PhyloBayes 3: A Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009;25(17):2286–2288. PubMed
Huerta-Cepas J, Dopazo J, Gabaldón T. ETE: A python Environment for Tree Exploration. BMC Bioinformatics. 2010;11:24. PubMed PMC
On the possibility of yet a third kinetochore system in the protist phylum Euglenozoa
Reconstructing the last common ancestor of all eukaryotes
Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events
Phylogenetic profiling and cellular analyses of ARL16 reveal roles in traffic of IFT140 and INPP5E
A Eukaryote-Wide Perspective on the Diversity and Evolution of the ARF GTPase Protein Family
Vestiges of the Bacterial Signal Recognition Particle-Based Protein Targeting in Mitochondria
Telomerase RNAs in land plants
Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis
Fe-S cluster assembly in the supergroup Excavata
Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase
A sophisticated, differentiated Golgi in the ancestor of eukaryotes
Nuclear genetic codes with a different meaning of the UAG and the UAA codon