Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29765641
PubMed Central
PMC5936906
DOI
10.1098/rsos.171707
PII: rsos171707
Knihovny.cz E-zdroje
- Klíčová slova
- Excavata, Metamonada, eukaryote evolution, protist, transcriptomics, ultrastructure,
- Publikační typ
- časopisecké články MeSH
Modern syntheses of eukaryote diversity assign almost all taxa to one of three groups: Amorphea, Diaphoretickes and Excavata (comprising Discoba and Metamonada). The most glaring exception is Malawimonadidae, a group of small heterotrophic flagellates that resemble Excavata by morphology, but branch with Amorphea in most phylogenomic analyses. However, just one malawimonad, Malawimonas jakobiformis, has been studied with both morphological and molecular-phylogenetic approaches, raising the spectre of interpretation errors and phylogenetic artefacts from low taxon sampling. We report a morphological and phylogenomic study of a new deep-branching malawimonad, Gefionella okellyi n. gen. n. sp. Electron microscopy revealed all canonical features of 'typical excavates', including flagellar vanes (as an opposed pair, unlike M. jakobiformis but like many metamonads) and a composite fibre. Initial phylogenomic analyses grouped malawimonads with the Amorphea-related orphan lineage Collodictyon, separate from a Metamonada+Discoba clade. However, support for this topology weakened when more sophisticated evolutionary models were used, and/or fast-evolving sites and long-branching taxa (FS/LB) were excluded. Analyses of '-FS/LB' datasets instead suggested a relationship between malawimonads and metamonads. The 'malawimonad+metamonad signal' in morphological and molecular data argues against a strict Metamonada+Discoba clade (i.e. the predominant concept of Excavata). A Metamonad+Discoba clade should therefore not be assumed when inferring deep-level evolutionary history in eukaryotes.
Department of Biological Sciences Mississippi State University Starkville MS 39762 USA
Department of Biology University of Copenhagen Universitetsparken 15 2100 Copenhagen Denmark
Zobrazit více v PubMed
Adl SM, et al. 2012. The revised classification of eukaryotes. J. Eukaryot. Microbiol. 57, 429–493. (doi:10.1111/j.1550-7408.2012.00644.x) PubMed DOI PMC
Cavalier-Smith T. 2013. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Europ. J. Protistol. 49, 115–178. (doi:10.1016/j.ejop.2012.06.001) PubMed DOI
Burki F. 2014. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb. Perspect. Biol. 6, a016147 (doi:10.1101/cshperspect.a016147) PubMed DOI PMC
Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ.. 2015. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (doi:10.1126/science.1257594) PubMed DOI
Simpson AGB, Eglit Y. 2016. Protist diversification. In Encyclopedia of evolutionary biology (ed. RM Kilman), pp. 344–360. Amsterdam, the Netherlands: Elsevier.
Cavalier-Smith T. 2003. The excavate protozoan phyla Metamonada Grassé emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): their evolutionary affinities and new higher taxa. Int. J. Syst. Evol. Microbiol. 53, 1741–1758. (doi:10.1099/ijs.0.02548-0) PubMed DOI
Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, Roger AJ. 2009. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic ‘supergroups’. Proc. Natl Acad. Sci. USA 106, 3859–3864. (doi:10.1073/pnas.0807880106) PubMed DOI PMC
Simpson AGB. 2003. Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). Int. J. Syst. Evol. Microbiol. 53, 1759–1777. (doi:10.1099/ijs.0.02578-0) PubMed DOI
O'Kelly CJ, Nerad TA. 1999. Malawimonas jakobiformis n. gen., n. sp. (Malawimonadidae fam. nov.): a Jakoba-like heterotrophic nanoflagellate with discoidal mitochondrial cristae. J. Eukaryot. Microbiol. 46, 522–531. (doi:10.1111/j.1550-7408.1999.tb06070.x) DOI
Simpson AGB, Patterson DJ. 1999. The ultrastructure of Carpediemonas membranifera (Eukaryota) with reference to the ‘excavate hypothesis’. Europ. J. Protistol. 35, 353–370. (doi:10.1016/S0932-4739(99)80044-3) DOI
Simpson AGB, Inagaki Y, Roger AJ. 2006. Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of ‘primitive’ eukaryotes. Mol. Biol. Evol. 23, 615–625. (doi:10.1093/molbev/msj068) PubMed DOI
Parfrey LW, Grant J, Tekle YI, Lasek-Nesselquist E, Morrison HG, Sogin ML, Patterson DJ, Katz LA. 2010. Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst. Biol. 59, 518–533. (doi:10.1093/sysbio/syq037) PubMed DOI PMC
Pánek T, Táborský P, Pachiadaki MG, Hroudová M, Vlček Č, Edgcomb VP, Čepička I. 2015. Combined culture-based and culture-independent approaches provide insights into diversity of jakobids, an extremely plesiomorphic eukaryotic lineage. Front. Microbiol. 6, 1288 (doi:10.3389/fmicb.2015.01288) PubMed DOI PMC
Zhang Q, Táborsky P, Silberman JD, Pánek T, Čepička I, Simpson AGB. 2015. Marine isolates of Trimastix marina form a plesiomorphic deep-branching lineage within Preaxostyla, separate from other known trimastigids (Paratrimastix n. gen.). Protist 166, 468–491. (doi:10.1016/j.protis.2015.07.003) PubMed DOI
Derelle R, Lang BF. 2012. Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol. Biol. Evol. 29, 1277–1289. (doi:10.1093/molbev/msr295) PubMed DOI
Zhao S, Burki F, Bråte J, Keeling PJ, Klaveness D, Shalchian-Tabrizi K. 2012. Collodictyon — an ancient lineage in the tree of eukaryotes. Mol. Biol. Evol. 29, 1557–1568. (doi:10.1093/molbev/mss001) PubMed DOI PMC
Zhao S, Shalchian-Tabrizi K, Klaveness D. 2013. Sulcozoa revealed as a paraphyletic group in mitochondrial phylogenomics. Mol. Phyl. Evol. 69, 462–468. (doi:10.1016/j.ympev.2013.08.005) PubMed DOI
Cavalier-Smith T, Chao EE, Snell EA, Berney C, Fiore-Donno AM, Lewis R. 2014. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Mol. Phylogenet. Evol. 81, 71–85. (doi:10.1016/j.ympev.2014.08.012) PubMed DOI
Kamikawa R, et al. 2014. Gene content evolution in discobid mitochondria deduced from the phylogenetic position and complete mitochondrial genome of Tsukubamonas globosa. Genome Biol. Evol. 6, 306–315. (doi:10.1093/gbe/evu015) PubMed DOI PMC
Katz LA, Grant JR. 2015. Taxon-rich phylogenomic analyses resolve the eukaryotic tree of life and reveal the power of subsampling by sites. Syst. Biol. 64, 406–415. (doi:10.1093/sysbio/syu126) PubMed DOI
Derelle R, Torruella G, Klimeš V, Brinkmann H, Kim E, Vlček Č, Lang BF, Eliáš M. 2015. Bacterial proteins pinpoint a single eukaryotic root. Proc. Natl Acad. Sci. USA 112, E693–E699. (doi:10.1073/pnas.1420657112) PubMed DOI PMC
Burki F, Kaplan M, Tikhonenkov DV, Zlatogursky V, Minh BQ, Radaykina LV, Smirnov A, Mylnikov AP, Keeling PJ. 2016. Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc. R. Soc. B 283, 20152802 (doi:10.1098/rspb.2015.2802) PubMed DOI PMC
Yubuki N, Leander BS. 2013. Evolution of microtubule organizing centers across the tree of eukaryotes. Plant J. 75, 230–244. (doi:10.1111/tpj.12145) PubMed DOI
Rodríguez-Ezpeleta N, Brinkmann H, Burger G, Roger AJ, Gray MW, Philippe H, Lang BF. 2007. Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans. Curr. Biol. 17, 1420–1425. (doi:10.1016/j.cub.2007.07.036) PubMed DOI
Burger G, Gray MW, Forget L, Lang BF. 2013. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol. Evol. 5, 418–438. (doi:10.1093/gbe/evt008) PubMed DOI PMC
Eliáš M, Klimeš V, Derelle R, Petrželková R, Tachezy J.. 2016. A paneukaryotic genomic analysis of the small GTPase RABL2 underscores the significance of recurrent gene loss in eukaryote evolution. Biol. Dir. 11, 5 (doi:10.1186/s13062-016-0107-8) PubMed DOI PMC
Valach M, Burger G, Gray MW, Lang BF. 2014. Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules. Nucleic Acids Res. 42, 13 764–13 777. (doi:10.1093/nar/gku1266) PubMed DOI PMC
Leander BS, Farmer MA. 2000. Comparative morphology of the euglenid pellicle. I. Patterns of strips and pores. J. Eukaryot. Microbiol. 47, 469–479. (doi:10.1111/j.1550-7408.2000.tb00076.x) PubMed DOI
Heiss AA, Walker G, Simpson AGB. 2013. The microtubular cytoskeleton of the apusomonad Thecamonas, a sister lineage to the opisthokonts. Protist 164, 598–621. (doi:10.1016/j.protis.2013.05.005) PubMed DOI
Grabherr MG, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652. (doi:10.1038/nbt.1883) PubMed DOI PMC
Brown MW, Kolisko M, Silberman JD, Roger AJ. 2012. Aggregative multicellularity evolved independently in the eukaryotic supergroup Rhizaria. Curr. Biol. 22, 1123–1127. (doi:10.1016/j.cub.2012.04.021) PubMed DOI
Brown MW, Sharpe SC, Silberman JD, Heiss AA, Lang BF, Simpson AGB, Roger AJ. 2013. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts: implications for the origin of genes involved in multicellularity. Proc. R. Soc. B 280, 20131755 (doi:10.1098/rspb.2013.1755) PubMed DOI PMC
Leger MM, et al. 2017. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat. Ecol. Evol. 1, 0092 (doi:10.1038/s41559-017-0092) PubMed DOI PMC
Stamatakis A. 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690. (doi:10.1093/bioinformatics/btl446) PubMed DOI
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. (doi:10.1093/molbev/msu300) PubMed DOI PMC
Lartillot N, Rodrigue N, Stubbs D, Richer J. 2013. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611–615. (doi:10.1093/sysbio/syt022) PubMed DOI
Susko E, Field C, Blouin C, Roger AJ. 2003. Estimation of rates-across-sites distributions in phylogenetic substitution models. Syst. Biol. 52, 594–603. (doi:10.1080/10635150390235395) PubMed DOI
Jeffroy O, Brinkmann H, Delsuc F, Philippe H. 2006. Phylogenomics: the beginning of incongruence? Trends Genet. 22, 225–231. (doi:10.1016/j.tig.2006.02.003) PubMed DOI
Lartillot N, Philippe H. 2008. Improvement of molecular phylogenetic inference and the phylogeny of Bilateria. Phil. Trans. R. Soc. B 363, 1463–1472. (doi:10.1098/rstb.2007.2236) PubMed DOI PMC
Kang S, et al. 2017. Between a pod and a hard test: the deep evolution of amoebae. Mol. Biol. Evol. 34, 2258–2270. (doi:10.1093/molbev/msx162) PubMed DOI PMC
Heiss AA, Heiss AW, Lukacs K, Kim E. 2017. The flagellar apparatus of the glaucophyte Cyanophora cuspidata. J. Phycol. 53, 1120–1150. (doi:10.1111/jpy.12569) PubMed DOI
Yubuki N, Simpson AGB, Leander BS. 2013. Comprehensive ultrastructure of Kipferlia bialata provides evidence for character evolution within the Fornicata. Protist 164, 423–439. (doi:10.1016/j.protis.2013.02.002) PubMed DOI
Lara E, Chatzinotas A, Simpson AGB. 2006. Andalucia (n. gen.)—The deepest branch within jakobids (Jakobida; Excavata), based on morphological and molecular study of a new flagellate from soil. J. Eukaryot. Microbiol. 53, 112–120. (doi:10.1111/j.1550-7408.2005.00081.x) PubMed DOI
Lartillot N, Brinkmann H, Philippe H. 2007. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 7, S4 (doi:10.1186/1471-2148-7-S1-S4) PubMed DOI PMC
Grau-Bové X, Sebé-Pedrós A, Ruiz-Trillo I. 2015. The eukaryotic ancestor had a complex ubiquitin signaling system of archaeal origin. Mol. Biol. Evol. 32, 726–739. (doi:10.1093/molbev/msu334) PubMed DOI PMC
Pittis AA, Gabaldon T. 2016. Late acquisition of mitochondria by a host with chimeric prokaryotic ancestry. Nature 531, 101–104. (doi:10.1038/nature16941) PubMed DOI PMC
Fukasawa Y, Oda T, Tomii K, Imai K. 2017. Origin and evolutionary alteration of the mitochondrial import system in eukaryotic lineages. Mol. Biol. Evol. 34, 1574–1586. (doi:10.1093/molbev/msx096) PubMed DOI PMC
Yabuki A, Nakayama T, Yubuki N, Hashimoto T, Ishida K, Inagaki Y. 2011. Tsukubamonas globosa n. gen., n. sp., a novel excavate flagellate possibly holding a key for the early evolution in ‘Discoba’. J. Eukaryot. Microbiol. 58, 319–331. (doi:10.1111/j.1550-7408.2011.00552.x) PubMed DOI
Heiss AA, Kolisko M, Ekelund F, Brown MW, Roger AJ, Simpson AGB. 2018. Data from: Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes. Dryad Digital Repository (doi:10.5061/dryad.9mv6d51) PubMed DOI PMC
EukRef-excavates: seven curated SSU ribosomal RNA gene databases
Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis