Combined Culture-Based and Culture-Independent Approaches Provide Insights into Diversity of Jakobids, an Extremely Plesiomorphic Eukaryotic Lineage
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26635756
PubMed Central
PMC4649034
DOI
10.3389/fmicb.2015.01288
Knihovny.cz E-zdroje
- Klíčová slova
- anaerobic protists, cryptic species, environmental clones, marine communities, species diversity,
- Publikační typ
- časopisecké články MeSH
We used culture-based and culture-independent approaches to discover diversity and ecology of anaerobic jakobids (Excavata: Jakobida), an overlooked, deep-branching lineage of free-living nanoflagellates related to Euglenozoa. Jakobids are among a few lineages of nanoflagellates frequently detected in anoxic habitats by PCR-based studies, however only two strains of a single jakobid species have been isolated from those habitats. We recovered 712 environmental sequences and cultured 21 new isolates of anaerobic jakobids that collectively represent at least ten different species in total, from which four are uncultured. Two cultured species have never been detected by environmental, PCR-based methods. Surprisingly, culture-based and culture-independent approaches were able to reveal a relatively high proportion of overall species diversity of anaerobic jakobids-60 or 80%, respectively. Our phylogenetic analyses based on SSU rDNA and six protein-coding genes showed that anaerobic jakobids constitute a clade of morphologically similar, but genetically and ecologically diverse protists-Stygiellidae fam. nov. Our investigation combines culture-based and environmental molecular-based approaches to capture a wider extent of species diversity and shows Stygiellidae as a group that ordinarily inhabits anoxic, sulfide- and ammonium-rich marine habitats worldwide.
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Geology and Geophysics Department Woods Hole Oceanographic Institution Woods Hole MA USA
Zobrazit více v PubMed
Adl S. M., Leander B. S., Simpson A. G., Archibald J. M., Anderson O. R., Bass D., et al. . (2007). Diversity, nomenclature, and taxonomy of protists. Syst. Biol. 56, 684–689. 10.1080/10635150701494127 PubMed DOI
Alexander E., Stock A., Breiner H. W., Behnke A., Bunge J., Yakimov M. M., et al. . (2009). Microbial eukaryotes in the hypersaline anoxic L'Atalante deep-sea basin. Environ. Microbiol. 11, 360–381. 10.1111/j.1462-2920.2008.01777.x PubMed DOI
Amaral Zettler L. A., Gómez F., Zettler E., Keenan B. G., Amils R., Sogin M. L. (2002). Microbiology: eukaryotic diversity in Spain's river of fire. Nature 417, 137. 10.1038/417137a PubMed DOI
Behnke A., Bunge J., Barger K., Breiner H. W., Alla V., Stoeck T. (2006). Microeukaryote community patterns along an O2/H2S gradient in a supersulfidic anoxic fjord (Framvaren, Norway). Appl. Environ. Microbiol. 72, 3626–3636. 10.1128/AEM.72.5.3626-3636.2006 PubMed DOI PMC
Berney C., Romac S., Mahé F., Santini S., Siano R., Bass D. (2013). Vampires in the oceans: predatory cercozoan amoebae in marine habitats. ISME J. 7, 2387–2399. 10.1038/ismej.2013.116 PubMed DOI PMC
Bernhard J. M., Kormas K., Pachiadaki M. G., Rocke E., Beaudoin D. J., Morrison C., et al. . (2014). Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments. Front. Microbiol. 5:605. 10.3389/fmicb.2014.00605 PubMed DOI PMC
Burger G., Gray M. W., Forget L., Lang B. F. (2013). Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol. Evol. 5, 418–438. 10.1093/gbe/evt008 PubMed DOI PMC
Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. . (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. 10.1038/nmeth.f.303 PubMed DOI PMC
Caron D. A., Countway P. D. (2009). Hypotheses on the role of the protistan rare biosphere in a changing world. Aquat. Microb. Ecol. 57, 227–238. 10.3354/ame01352 DOI
Caron D. A., Countway P. D., Jones A. C., Kim D. Y., Schnetzer A. (2012). Marine protistan diversity. Annu. Rev. Mar. Sci. 4, 467–493. 10.1146/annurev-marine-120709-142802 PubMed DOI
Caron D. A., Countway P. D., Savai P., Gast R. J., Schnetzer A., Moorthi S. D., et al. . (2009). Defining DNA-based operational taxonomic units for microbial-eukaryote ecology. Appl. Environ. Microbiol. 75, 5797–5808. 10.1128/AEM.00298-09 PubMed DOI PMC
Cavalier-Smith T. (2013). Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur. J. Protistol. 49, 115–178. 10.1016/j.ejop.2012.06.001 PubMed DOI
Derelle R., Torruella G., Klimeš V., Brinkmann H., Kim E., Vlcek C., et al. . (2015). Bacterial proteins pinpoint a single eukaryotic root. Proc. Natl. Acad. Sci. U.S.A. 112, E693–E699. 10.1073/pnas.1420657112 PubMed DOI PMC
de Vargas C., Audic S., Henry N., Decelle J., Mahé F., Logares R., et al. . (2015). Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605. 10.1126/science.1261605 PubMed DOI
Edgcomb V., Orsi W., Bunge J., Jeon S.-O., Christen R., Leslin C., et al. . (2011b). Protistan microbial observatory in the Cariaco Basin, Caribbean. I. Pyrosequencing vs. Sanger insights into species richness. ISME J. 5, 1344–1356. 10.1038/ismej.2011.6 PubMed DOI PMC
Edgcomb V. P., Orsi W., Breiner H. W., Stock A., Filker S., Yakimov M. M., et al. (2011a). Novel active kinetoplastids associated with hypersaline anoxic basins in the Eastern Mediterranean deep-sea. Deep-Sea Res. PT I 58, 1040–1048. 10.1016/j.dsr.2011.07.003 DOI
Edgcomb V. P., Roger A. J., Simpson A. G. B., Kysela D. T., Sogin M. L. (2001). Evolutionary relationships among “jakobid” flagellates as indicated by alpha- and beta-tubulin phylogenies. Mol. Biol. Evol. 18, 514–522. 10.1093/oxfordjournals.molbev.a003830 PubMed DOI
Guillou L., Bachar D., Audic S., Bass D., Berney C., Bittner L., et al. . (2013). The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucl. Acids Res. 41, D597–604. 10.1093/nar/gks1160 PubMed DOI PMC
Hall T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.
Hess M., Kolbe T., Grabensteiner E., Prosl H. (2006). Clonal cultures of Histomonas meleagridis, Tetratrichomonas gallinarum and a Blastocystis sp. established through micromanipulation. Parasitology 133, 547–554. 10.1017/S0031182006000758 PubMed DOI
Katoh K., Kuma K., Toh H., Miyata T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518. 10.1093/nar/gki198 PubMed DOI PMC
Kolisko M., Silberman J. D., Cepicka I., Yubuki N., Takishita K., Yabuki A., et al. (2010). A wide diversity of previously undetected free-living relatives of diplomonads isolated from marine/saline habitats. Environ. Microbiol. 12, 2700–2710. 10.1111/j.1462-2920.2010.02239.x PubMed DOI
Lara E., Chatzinotas A., Simpson A. G. B. (2006). Andalucia (n. gen.) – the deepest branch within jakobids (Jakobida: Excavata), based on morphological and molecular study of a new flagellate from soil. J. Eukaryot. Microbiol. 53, 112–120. 10.1111/j.1550-7408.2005.00081.x PubMed DOI
Lartillot N., Philippe H. (2004). A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109. 10.1093/molbev/msh112 PubMed DOI
Lie A. A. Y., Liu Z., Hu S. K., Jones A. C., Kim D. Y., Countway P. D., et al. . (2014). Investigating microbial eukaryotic diversity from a global census: insights from a comparison of pyrotag and full-length sequences of 18S rRNA gene sequences. Appl. Environ. Microbiol. 80, 4363–4373. 10.1128/AEM.00057-14 PubMed DOI PMC
Logares R., Rengefors K., Kremp A., Shalchian-Tabrizi K., Boltovskoy A., Tengs T., et al. . (2007). Phenotypically different microalgal morphospecies with identical ribosomal DNA: a case of rapid adaptive evolution? Microbial Ecol. 53, 549–561. 10.1007/s00248-006-9088-y PubMed DOI
Lowe C. D., Day A., Kemp S. J., Montagnes D. J. S. (2005). There are high levels of functional and genetic diversity in Oxyrrhis marina. J. Eukaryot. Microbiol. 52, 250–257. 10.1111/j.1550-7408.2005.00034.x PubMed DOI
Massana R., Gobet A., Audic S., Bass D., Bittner L., Boutte C., et al. . (2015). Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ. Microbiol. 17, 4035–4049. 10.1111/1462-2920.12955 PubMed DOI
Medlin L., Elwood H. J., Stickel S., Sogin M. L. (1988). The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499. 10.1016/0378-1119(88)90066-2 PubMed DOI
Nie D. (1950). Morphology and taxonomy of the intestinal protozoa of the guinea-pig, Cavia porcella. J. Morphol. 86, 381–493. 10.1002/jmor.1050860302 PubMed DOI
O'Kelly C. J., Nerad T. A. (1999). Malawimonas jakobiformis n. gen., n. sp.(Malawimonadidae n. fam.): a Jakoba-like heterotrophic nanoflagellate with discoidal mitochondrial cristae. J. Eukaryot. Microbiol. 46, 522–531.
Orsi W., Edgcomb V., Jeon S., Leslin C., Bunge J., Taylor G. T., et al. . (2011). Protistan microbial observatory in the Cariaco Basin, Caribbean. II. Habitat specialization. ISME J. 5, 1357–1373. 10.1038/ismej.2011.7 PubMed DOI PMC
Orsi W., Song Y. C., Hallam S., Edgcomb V. (2012). Effect of oxygen minimum zone formation on communities of marine protists. ISME J. 6, 1586–1601. 10.1038/ismej.2012.7 PubMed DOI PMC
Pánek T., Ptáčková E., Čepička I. (2014a). Survey on diversity of marine/saline anaerobic Heterolobosea (Excavata: Discoba) with description of seven new species. Int. J. Sys. Evol. Microbiol. 64, 2280–2304. 10.1099/ijs.0.063487-0 PubMed DOI
Pánek T., Simpson A. G. B., Hampl V., Čepička I. (2014b). Creneis carolina gen. et sp. nov. (Heterolobosea), a novel marine anaerobic protist with strikingly derived morphology and life cycle. Protist 165, 542–567. 10.1016/j.protis.2014.05.005 PubMed DOI
Pawlowski J., Audic S., Adl S., Bass D., Belbahri L., Berney C., et al. . (2012). CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 10:e1001419. 10.1371/journal.pbio.1001419 PubMed DOI PMC
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41, D590–D596. 10.1093/nar/gks1219 PubMed DOI PMC
Simpson A. G. B., Patterson D. J. (2001). On core jakobids and excavate taxa: the ultrastructure of Jakoba incarcerata. J. Eukaryot. Microbiol. 48, 480–492. 10.1111/j.1550-7408.2001.tb00183.x PubMed DOI
Simpson A. G. B., Perley T. A., Lara E. (2008). Lateral transfer of the gene for a widely used marker, a-tubulin, indicated by a multi-protein study of the phylogenetic position of Andalucia (Excavata). Mol. Phylogenet. Evol. 47, 366–377. 10.1016/j.ympev.2007.11.035 PubMed DOI
Sjöstedt J., Koch-Schmidt P., Pontarp M., Canbäck B., Tunlid A., Lundberg P., et al. (2012). Recruitment of members from the rare biosphere of marine bacterioplankton communities after an environmental disturbance. Appl. Environ. Microbiol. 78, 1361–1369. 10.1128/AEM.05542-11 PubMed DOI PMC
Stamatakis A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690. 10.1093/bioinformatics/btl446 PubMed DOI
Stock A., Edgcomb V. P., Orsi W., Filker S., Breiner H. W., Yakimov M. M., et al. . (2013). Evidence for isolated evolution of deep-sea ciliate communities through environmental selection and geological chronology. BMC Microbiol. 13:150. 10.1186/1471-2180-13-150 PubMed DOI PMC
Stock A., Jürgens K., Bunge J., Stoeck T. (2009). Protistan diversity in suboxic and anoxic waters of Gotland Deep (Baltic Sea) as revealed by 18S rRNA clone libraries. Aquat. Microb. Ecol. 55, 267–284. 10.3354/ame01301 DOI
Stoeck T., Bass D., Nebel M., Christen R., Jones M. D. M., Breiner H. W., et al. (2010). Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31. 10.1111/j.1365-294X.2009.04480.x PubMed DOI
Stoeck T., Behnke A., Christen R., Amaral-Zettler L., Rodriguez-Mora M. J., Chistoserdov A., et al. . (2009). Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. BMC Biol. 7:72. 10.1186/1741-7007-7-72 PubMed DOI PMC
Stoeck T., Zuendorf A., Breiner H. W., Behnke A. (2007). A molecular approach to identify active microbes in environmental eukaryote clone libraries. Microbiol. Ecol. 53, 328–339. 10.1007/s00248-006-9166-1 PubMed DOI
Weber F., Anderson R., Foissner W., Mylnikov A. P., Jürgens K. (2014). Morphological and molecular approaches reveal highly stratified protist communities along Baltic Sea pelagic redox gradients. Aquat. Microb. Ecol. 73, 1–16. 10.3354/ame01702 DOI
Weisse T. (2008). Distribution and diversity of aquatic protists: an evolutionary and ecological perspective. Biodivers. Conserv. 17, 243–259. 10.1007/s10531-007-9249-4 DOI
Yoon H. S., Grant J., Tekle Y. I., Wu M., Chaon B. C., Cole J. C., et al. (2008). Broadly sampled multigene trees of eukaryotes. BMC Evol. Biol. 8:14 10.1186/1471-2148-8-14 PubMed DOI PMC
Yubuki N., Céza V., Cepicka I., Yabuki A., Inagaki Y., Nakayama T., et al. . (2010). Cryptic diversity of free-living parabasalids, Pseudotrichomonas keilini and Lacusteria cypriaca n. g., n. sp., as inferred from small subunit rDNA sequences. J. Eukaryot. Microbiol. 57, 554–561. 10.1111/j.1550-7408.2010.00509.x PubMed DOI
Yubuki N., Leander B. S. (2013). Evolution of microtubule organizing centers across the tree of eukaryotes. Plant J. 75, 230–244. 10.1111/tpj.12145 PubMed DOI
EukRef-excavates: seven curated SSU ribosomal RNA gene databases