From simple to supercomplex: mitochondrial genomes of euglenozoan protists
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu přehledy, časopisecké články
PubMed
27018240
PubMed Central
PMC4806707
DOI
10.12688/f1000research.8040.2
PII: F1000FacultyRev-392
Knihovny.cz E-zdroje
- Klíčová slova
- euglenozoa, mitochondria, mitochondrial genome,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mitochondria are double membrane organelles of endosymbiotic origin, best known for constituting the centre of energetics of a eukaryotic cell. They contain their own mitochondrial genome, which as a consequence of gradual reduction during evolution typically contains less than two dozens of genes. In this review, we highlight the extremely diverse architecture of mitochondrial genomes and mechanisms of gene expression between the three sister groups constituting the phylum Euglenozoa - Euglenida, Diplonemea and Kinetoplastea. The earliest diverging euglenids possess a simplified mitochondrial genome and a conventional gene expression, whereas both are highly complex in the two other groups. The expression of their mitochondrial-encoded proteins requires extensive post-transcriptional modifications guided by complex protein machineries and multiple small RNA molecules. Moreover, the least studied diplonemids, which have been recently discovered as a highly abundant component of the world ocean plankton, possess one of the most complicated mitochondrial genome organisations known to date.
Zobrazit více v PubMed
Adl SM, Simpson AG, Lane CE, et al. : The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59(5):429–93. 10.1111/j.1550-7408.2012.00644.x PubMed DOI PMC
Lukeš J, Skalický T, Týč J, et al. : Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014;195(2):115–22. 10.1016/j.molbiopara.2014.05.007 PubMed DOI
Hampl V, Hug L, Leigh JW, et al. : Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups". Proc Natl Acad Sci U S A. 2009;106(10):3859–64. 10.1073/pnas.0807880106 PubMed DOI PMC
de Vargas C, Audic S, Henry N, et al. : Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348(6237):1261605. 10.1126/science.1261605 PubMed DOI
Lukeš J, Flegontova O, Horák A: Diplonemids. Curr Biol. 2015;25(16):R702–4. 10.1016/j.cub.2015.04.052 PubMed DOI
Tielens AG, van Hellemond JJ: Surprising variety in energy metabolism within Trypanosomatidae. Trends Parasitol. 2009;25(10):482–90. 10.1016/j.pt.2009.07.007 PubMed DOI
Zíková A, Hampl V, Paris Z, et al. : Aerobic mitochondria of parasitic protists: Diverse genomes and complex functions. Mol Biochem Parasitol. 2016; pii: S0166-6851(16)30015-9. 10.1016/j.molbiopara.2016.02.007 PubMed DOI
Marande W, Lukes J, Burger G: Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids. Eukaryot Cell. 2005;4(6):1137–46. 10.1128/EC.4.6.1137-1146.2005 PubMed DOI PMC
Smith DR, Keeling PJ: Mitochondrial and plastid genome architecture: Reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A. 2015;112(33):10177–84. 10.1073/pnas.1422049112 PubMed DOI PMC
Pawlowski J, Audic S, Adl S, et al. : CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 2012;10(11):e1001419. 10.1371/journal.pbio.1001419 PubMed DOI PMC
Gray MW: Diversity and evolution of mitochondrial RNA editing systems. IUBMB Life. 2003;55(4–5):227–33. 10.1080/1521654031000119425 PubMed DOI
Smith DR: The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs? Brief Funct Genomics. 2016;15(1):47–54. 10.1093/bfgp/elv027 PubMed DOI PMC
Flegontov P, Michálek J, Janouškovec J, et al. : Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol Biol Evol. 2015;32(5):1115–31. 10.1093/molbev/msv021 PubMed DOI
Burger G, Gray MW, Forget L, et al. : Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol Evol. 2013;5(2):418–38. 10.1093/gbe/evt008 PubMed DOI PMC
Roy J, Faktorová D, Lukes J, et al. : Unusual mitochondrial genome structures throughout the Euglenozoa. Protist. 2007;158(3):385–96. 10.1016/j.protis.2007.03.002 PubMed DOI
Lukes J, Guilbride DL, Votýpka J, et al. : Kinetoplast DNA network: evolution of an improbable structure. Eukaryot Cell. 2002;1(4):495–502. 10.1128/EC.1.4.495-502.2002 PubMed DOI PMC
Jensen RE, Englund PT: Network news: the replication of kinetoplast DNA. Annu Rev Microbiol. 2012;66:473–91. 10.1146/annurev-micro-092611-150057 PubMed DOI
Povelones ML: Beyond replication: division and segregation of mitochondrial DNA in kinetoplastids. Mol Biochem Parasitol. 2014;196(1):53–60. 10.1016/j.molbiopara.2014.03.008 PubMed DOI
Verner Z, Basu S, Benz C, et al. : Malleable mitochondrion of Trypanosoma brucei. Int Rev Cell Mol Biol. 2015;315:73–151. 10.1016/bs.ircmb.2014.11.001 PubMed DOI
Liu B, Liu Y, Motyka SA, et al. : Fellowship of the rings: the replication of kinetoplast DNA. Trends Parasitol. 2005;21(8):363–9. 10.1016/j.pt.2005.06.008 PubMed DOI
Borst P, Fase-Fowler F, Weijers PJ, et al. : Kinetoplast DNA from Trypanosoma vivax and T. congolense. Mol Biochem Parasitol. 1985;15(2):129–42. 10.1016/0166-6851(85)90114-8 PubMed DOI
Sloof P, de Haan A, Eier W, et al. : The nucleotide sequence of the variable region in Trypanosoma brucei completes the sequence analysis of the maxicircle component of mitochondrial kinetoplast DNA. Mol Biochem Parasitol. 1992;56(2):289–99. 10.1016/0166-6851(92)90178-M PubMed DOI
Shapiro TA, Englund PT: The structure and replication of kinetoplast DNA. Annu Rev Microbiol. 1995;49:117–43. 10.1146/annurev.mi.49.100195.001001 PubMed DOI
Benne R, De Vries BF, Van den Burg J, et al. : The nucleotide sequence of a segment of Trypanosoma brucei mitochondrial maxi-circle DNA that contains the gene for apocytochrome b and some unusual unassigned reading frames. Nucleic Acids Res. 1983;11(20):6925–41. 10.1093/nar/11.20.6925 PubMed DOI PMC
Simpson L, Neckelmann N, de la Cruz VF, et al. : Comparison of the maxicircle (mitochondrial) genomes of Leishmania tarentolae and Trypanosoma brucei at the level of nucleotide sequence. J Biol Chem. 1987;262(13):6182–96. PubMed
Koslowsky D, Sun Y, Hindenach J, et al. : The insect-phase gRNA transcriptome in Trypanosoma brucei. Nucleic Acids Res. 2014;42(3):1873–86. 10.1093/nar/gkt973 PubMed DOI PMC
Aphasizhev R, Aphasizheva I: Mitochondrial RNA editing in trypanosomes: small RNAs in control. Biochimie. 2014;100:125–31. 10.1016/j.biochi.2014.01.003 PubMed DOI PMC
Read LK, Lukeš J, Hashimi H: Trypanosome RNA editing: the complexity of getting U in and taking U out. Wiley Interdiscip Rev RNA. 2016;7(1):33–51. 10.1002/wrna.1313 PubMed DOI PMC
Alfonzo JD, Blanc V, Estévez AM, et al. : C to U editing of the anticodon of imported mitochondrial tRNA Trp allows decoding of the UGA stop codon in Leishmania tarentolae. EMBO J. 1999;18(24):7056–62. 10.1093/emboj/18.24.7056 PubMed DOI PMC
Alfonzo JD, Söll D: Mitochondrial tRNA import--the challenge to understand has just begun. Biol Chem. 2009;390(8):717–22. 10.1515/BC.2009.101 PubMed DOI PMC
Vlcek C, Marande W, Teijeiro S, et al. : Systematically fragmented genes in a multipartite mitochondrial genome. Nucleic Acids Res. 2011;39(3):979–88. 10.1093/nar/gkq883 PubMed DOI PMC
Kiethega GN, Yan Y, Turcotte M, et al. : RNA-level unscrambling of fragmented genes in Diplonema mitochondria. RNA Biol. 2013;10(2):301–13. 10.4161/rna.23340 PubMed DOI PMC
Marande W, Burger G: Mitochondrial DNA as a genomic jigsaw puzzle. Science. 2007;318(5849):415. 10.1126/science.1148033 PubMed DOI
Valach M, Burger G, Gray MW, et al. : Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules. Nucleic Acids Res. 2014;42(22):13764–77. 10.1093/nar/gku1266 PubMed DOI PMC
Moreira S, Valach M, Aoulad-Aissa M, et al. : Novel modes of RNA editing in mitochondria. Nucleic Acids Res. 2016;44(10):4907–19. 10.1093/nar/gkw188 PubMed DOI PMC
Spencer DF, Gray MW: Ribosomal RNA genes in Euglena gracilis mitochondrial DNA: fragmented genes in a seemingly fragmented genome. Mol Genet Genomics. 2011;285(1):19–31. 10.1007/s00438-010-0585-9 PubMed DOI
Tessier LH, van der Speck H, Gualberto JM, et al. : The cox1 gene from Euglena gracilis: a protist mitochondrial gene without introns and genetic code modifications. Curr Genet. 1997;31(3):208–13. 10.1007/s002940050197 PubMed DOI
Dobáková E, Flegontov P, Skalický T, et al. : Unexpectedly Streamlined Mitochondrial Genome of the Euglenozoan Euglena gracilis. Genome Biol Evol. 2015;7(12):3358–67. 10.1093/gbe/evv229 PubMed DOI PMC
Lukeš J, Archibald JM, Keeling PJ, et al. : How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life. 2011;63(7):528–37. 10.1002/iub.489 PubMed DOI
Zíková A, Panigrahi AK, Dalley RA, et al. : Trypanosoma brucei mitochondrial ribosomes: affinity purification and component identification by mass spectrometry. Mol Cell Proteomics. 2008;7(7):1286–96. 10.1074/mcp.M700490-MCP200 PubMed DOI PMC
Ridlon L, Škodová I, Pan S, et al. : The importance of the 45 S ribosomal small subunit-related complex for mitochondrial translation in Trypanosoma brucei. J Biol Chem. 2013;288(46):32963–78. 10.1074/jbc.M113.501874 PubMed DOI PMC
Horvath A, Kingan TG, Maslov DA: Detection of the mitochondrially encoded cytochrome c oxidase subunit I in the trypanosomatid protozoan Leishmania tarentolae. Evidence for translation of unedited mRNA in the kinetoplast. J Biol Chem. 2000;275(22):17160–5. 10.1074/jbc.M907246199 PubMed DOI
Škodová-Sveráková I, Horváth A, Maslov DA: Identification of the mitochondrially encoded subunit 6 of F 1F O ATPase in Trypanosoma brucei . Mol Biochem Parasitol. 2015;201(2):135–8. 10.1016/j.molbiopara.2015.08.002 PubMed DOI PMC
Cech TR: RNA editing: world's smallest introns? Cell. 1991;64(4):667–9. 10.1016/0092-8674(91)90494-J PubMed DOI
Flegontov P, Gray MW, Burger G, et al. : Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa? Curr Genet. 2011;57(4):225–32. 10.1007/s00294-011-0340-8 PubMed DOI
Gray MW, Lukes J, Archibald JM, et al. : Cell biology. Irremediable complexity? Science. 2010;330(6006):920–1. 10.1126/science.1198594 PubMed DOI