Cascades of convergent evolution: the corresponding evolutionary histories of euglenozoans and dinoflagellates
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19528647
PubMed Central
PMC2702789
DOI
10.1073/pnas.0901004106
PII: 0901004106
Knihovny.cz E-zdroje
- MeSH
- Dinoflagellata fyziologie MeSH
- Euglenida fyziologie MeSH
- fylogeneze * MeSH
- fyziologická adaptace fyziologie MeSH
- molekulární evoluce * MeSH
- protozoální geny fyziologie MeSH
- regulace genové exprese fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The majority of eukaryotic diversity is hidden in protists, yet our current knowledge of processes and structures in the eukaryotic cell is almost exclusively derived from multicellular organisms. The increasing sensitivity of molecular methods and growing interest in microeukaryotes has only recently demonstrated that many features so far considered to be universal for eukaryotes actually exist in strikingly different versions. In other words, during their long evolutionary histories, protists have solved general biological problems in many more ways than previously appreciated. Interestingly, some groups have broken more rules than others, and the Euglenozoa and the Alveolata stand out in this respect. A review of the numerous odd features in these 2 groups allows us to draw attention to the high level of convergent evolution in protists, which perhaps reflects the limits that certain features can be altered. Moreover, the appearance of one deviation in an ancestor can constrain the set of possible downstream deviations in its descendents, so features that might be independent functionally, can still be evolutionarily linked. What functional advantage may be conferred by the excessive complexity of euglenozoan and alveolate gene expression, organellar genome structure, and RNA editing and processing has been thoroughly debated, but we suggest these are more likely the products of constructive neutral evolution, and as such do not necessarily confer any selective advantage at all.
Zobrazit více v PubMed
Leander BS, Esson HJ, Breglia SA. Macroevolution of complex cytoskeletal systems in euglenids. BioEssays. 2007;29:987–1000. PubMed
Simpson AGB, Stevens JR, Lukeš J. The evolution and diversity of kinetoplastid flagellates. Trends Parasitol. 2006;22:168–174. PubMed
Oborník M, Janouškovec J, Chrudimský T, Lukeš J. Evolution of the apicoplast and its hosts: From heterotrophy to autotrophy and back again. Int J Parasitol. 2009;39:1–12. PubMed
Keeling PJ, et al. The tree of eukaryotes. Trends Ecol Evol. 2005;20:670–676. PubMed
Keeling PJ. Chromalveolates and the evolution of plastids by secondary endosymbiosis. J Euk Microbiol. 2009;56:1–8. PubMed
Leander BS. A hierarchical view of convergent evolution in microbial eukaryotes. J Euk Microbiol. 2008;55:59–68. PubMed
Hampl V, et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups.”. Proc Natl Acad Sci USA. 2009;106:3859–3864. PubMed PMC
Conway-Morris S, Gould SJ. Showdown on the Burgess Shale. Nat Hist. 1998;107:48.
Zakon HH. Convergent evolution on the molecular level. Behav Evol. 2002;59:250–261. PubMed
Emery NJ, Clayton NS. The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science. 2004;306:1903–1907. PubMed
Arndt J, Reznick D. Convergence and parallelism reconsidered: What have we learned about the genetics of adaptation? Trends Ecol Evol. 2008;23:26–32. PubMed
Stoltzfus A. On the possibility of constructive neutral evolution. J Mol Evol. 1999;49:169–181. PubMed
Taylor FJR. The Biology of Dinoflagellates. Oxford: Blackwell Scientific; 1987.
Bouck GB, Ngo H. Cortical structure and function in euglenoids with reference to trypanosomes, ciliates, and dinoflagellates. Int Rev Cytol. 1996;169:267–318. PubMed
Hausmann K. Extrusive organelles in protists. Int Rev Cytol. 1978;52:197–268. PubMed
Saito A, et al. Gliding movement in Peranema trichophorum is powered by flagellar surface motility. Cell Motil Cytoskel. 2003;55:244–253. PubMed
Leander BS, Triemer RE, Farmer MA. Character evolution in heterotrophic euglenids. Eur J Protistol. 2001;37:337–356.
McEwan M, Humayun R, Slamovits CH, Keeling PJ. Nuclear genome sequence survey of the dinoflagellate Heterocapsa triquetra. J Euk Microbiol. 2008;55:530–535. PubMed
Berriman M, et al. The genome of the African trypanosome, Trypanosoma brucei. Science. 2005;309:416–422. PubMed
Bachvaroff TR, Place AR. From stop to start: Tandem gene arrangement, copy number and trans-splicing sites in the dinoflagellate Amphidinium carterae. PLoS One. 2008;3:e2929. PubMed PMC
Zhang H, et al. Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci USA. 2007;104:4618–4623. PubMed PMC
Slamovits CH, Keeling PJ. Widespread recycling of processed cDNAs in dinoflagellates. Curr Biol. 2008;18:R550–R552. PubMed
Campbell DA, Thomas S, Sturm NR. Transcription in kinetoplastid protozoa: Why be normal? Microbes Infect. 2003;5:1231–1240. PubMed
Ghedin E, et al. Gene synteny and evolution of genome architecture in trypanosomatids. Mol Biochem Parasitol. 2004;134:183–191. PubMed
Gunzl A, Vanhamme L, Myler PJ. Transcription in Trypanosomes: A different means to the end. In: Barry D, McCulloch R, Mottram J, Acosta-Serrano A, editors. Trypanosomes After the Genome. Norfolk, UK: Horizon Bioscience; 2007.
Graber JH, Salisbury J, Hutchins LN, Blumenthal T. C. elegans sequences that control trans- splicing and operon pre-mRNA processing. RNA. 2007;13:1409–1426. PubMed PMC
Clayton CE. Life without transcriptional control? From fly to man and back again. EMBO J. 2002;21:1881–1888. PubMed PMC
Leander BS. Did trypanosomatid parasites have photosynthetic ancestors? Trends Microbiol. 2004;12:251–258. PubMed
Copertino DW, Hallick RB. Group-II and group-III introns of twintrons–potential relationships with nuclear premessenger RNA introns. Nucl Acids Res. 1993;18:467–471. PubMed
Wang Y, Morse D. Rampant polyuridylylation of plastid gene transcripts in the dinoflagellate Lingulodinium. Nucl Acids Res. 2006;34:613–619. PubMed PMC
Lukeš J, Hashimi H, Zíková A. Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates. Curr Genet. 2005;48:277–299. PubMed
Schnepf E, Deichgraber G. “Myzocytosis,” a kind of endocytosis with implications to compartmentalization in endosymbiosis. Naturwissenschaften. 1984;71:218–219.
Patron NJ, Waller RF, Archibald JM, Keeling PJ. Complex protein targeting to dinoflagellate plastids. J Mol Biol. 2005;384:1015–1024. PubMed
Durnford DG, Gray MW. Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Eukaryot Cell. 2006;5:2079–2091. PubMed PMC
Sulli C, Fang ZW, Muchhal U, Schwartzbach SD. Topology of Euglena chloroplast protein precursors within endoplasmic reticulum to Golgi to chloroplast transport vesicles. J Biol Chem. 1999;274:457–463. PubMed
Nassoury N, Cappadocia M, Morse D. Plastid ultrastructure defines the protein import pathway in dinoflagellates. J Cell Sci. 2003;116:2867–2874. PubMed
Slamovits CH, Saldarriaga JF, Larocque A, Keeling PJ. The highly reduced and fragmented mitochondrial genome of the early-branching dinoflagellate Oxyrrhis marina shares characteristics with both apicomplexan and dinoflagellate mitochondrial genomes. J Mol Biol. 2007;372:356–368. PubMed
Nash EA, Nisbet RER, Barbrook AC, Howe CJ. Dinoflagellates: A mitochondrial genome all at sea. Trends Genet. 2008;24:328–335. PubMed
Marande W, Lukeš J, Burger G. Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids. Eukaryot Cell. 2005;4:1137–1146. PubMed PMC
Lukeš J, Jirků M, Avliyakulov N, Benada O. Pankinetoplast DNA structure in a primitive bodonid flagellate, Cryptobia helicis. EMBO J. 1998;17:838–846. PubMed PMC
Crausaz-Esseiva A, Naguleswaran A, Hemphill A, Schneider A. Mitochondrial tRNA import in Toxoplasma gondii. J Biol Chem. 2004;279:42363–42368. PubMed
Tan THP, Bochud-Allemann N, Horn EK, Schneider A. Eukaryotic-type elongator tRNAMet of Trypanosoma brucei becomes formylated after import into mitochondria. Proc Natl Acad Sci USA. 2002;99:1152–1157. PubMed PMC
Feagin JE. Mitochondrial genome diversity in parasites. Int J Parasitol. 2000;33:371–390. PubMed
Bouzaidi-Tiali N, Aeby E, Charriere F, Pusnik M, Schneider A. Elongation factor 1a mediates the specificity of mitochondrial tRNA import in T. brucei. EMBO J. 2007;20:4302–4312. PubMed PMC
Jackson CJ, et al. Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria. BMC Biol. 2007;5:41. PubMed PMC
Hashimi H, Zíková A, Panigrahi AK, Stuart KD, Lukeš J. TbRGG1, a component of a novel multiprotein complex involved in kinetoplastid RNA editing. RNA. 2008;14:970–980. PubMed PMC
Lin SJ, Zhang HA, Spencer DF, Norman JE, Gray MW. Widespread and extensive editing of mitochondrial mRNAs in dinoflagellates. J Mol Biol. 2002;320:727–739. PubMed
Zhang H, Lin S. mRNA editing and spliced-leader RNA trans-splicing groups Oxyrrhis, Noctiluca, Heterocapsa, and Amphidinium as basal lineages of dinoflagellates. J Phycol. 2008;44:703–711. PubMed
Nash EA, et al. Organisation of the mitochondrial genome in the dinoflagellate Amphidinium carterae. Mol Biol Evol. 2007;24:1528–1536. PubMed
Etheridge RD, Aphasizheva I, Gershon PD, Aphasizhev R. 3′ adenylation determined mRNA abundance and monitors completion of RNA editing in T. brucei mitochondria. EMBO J. 2008;27:1596–1608. PubMed PMC
Marande W, Burger G. Mitochondrial DNA as a genomic jigsaw puzzle. Science. 2007;318:415. PubMed
Speijer D. Evolutionary aspects of RNA editing. In: Goringer HU, editor. RNA Editing. Berlin: Springer; 2007.
Ochsenreiter T, Cipriano M, Hajduk SL. Alternative mRNA editing in trypanosomes is extensive and may contribute to mitochondrial protein diversity. PLoS One. 2008;3:e1566. PubMed PMC
Covello PS, Gray MW. On the evolution of RNA editing. Trends Genet. 1993;9:265–268. PubMed
Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum
Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoans
Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses
Unexpectedly Streamlined Mitochondrial Genome of the Euglenozoan Euglena gracilis
Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa?
Systematically fragmented genes in a multipartite mitochondrial genome