Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus Cuscuta
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33090498
DOI
10.1111/nph.17003
Knihovny.cz E-resources
- Keywords
- Cuscuta, Convolvulaceae, centromere, genome size, holocentric chromosomes, monocentric chromosomes, repetitive DNA,
- MeSH
- Centromere genetics MeSH
- Cuscuta * genetics MeSH
- Phylogeny MeSH
- Genome, Plant genetics MeSH
- Evolution, Molecular MeSH
- Life Style MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The parasitic genus Cuscuta (Convolvulaceae) is exceptional among plants with respect to centromere organization, including both monocentric and holocentric chromosomes, and substantial variation in genome size and chromosome number. We investigated 12 species representing the diversity of the genus in a phylogenetic context to reveal the molecular and evolutionary processes leading to diversification of their genomes. We measured genome sizes and investigated karyotypes and centromere organization using molecular cytogenetic techniques. We also performed low-pass whole genome sequencing and comparative analysis of repetitive DNA composition. A remarkable 102-fold variation in genome sizes (342-34 734 Mbp/1C) was detected for monocentric Cuscuta species, while genomes of holocentric species were of moderate sizes (533-1545 Mbp/1C). The genome size variation was primarily driven by the differential accumulation of LTR-retrotransposons and satellite DNA. The transition to holocentric chromosomes in the subgenus Cuscuta was associated with loss of histone H2A phosphorylation and elimination of centromeric retrotransposons. In addition, basic chromosome number of holocentric species (x = 7) was smaller than in monocentrics (x = 15 or 16). We demonstrated that the transition to holocentricity in Cuscuta was accompanied by significant changes in epigenetic marks, chromosome number and the repetitive DNA sequence composition.
See more in PubMed
Bennetzen JL, Wang H. 2014. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annual Review of Plant Biology 65: 505-530.
Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27: 573-580.
Brankovics B, Zhang H, van Diepeningen AD, van der Lee TAJ, Waalwijk C, de Hoog GS. 2016. GRAbB: selective assembly of genomic regions, a new niche for genomic research. PLOS Computational Biology 12: e1004753.
Bureš P, Zedek F, Marková M. 2013. Holocentric chromosomes. In: Greilhuber J, Doležel J, Wendel JF, eds. Plant genome diversity, vol. 2. Vienna, Austria: Springer, 187-208.
Chen L, Sun J, Su D, Cao Q, Li Z, Han Y. 2020. Phylogenetic study of Ipomoeae (Convolvulaceae) based on chromosome painting. Research Square. doi: 10.21203/rs.2.22837/v1.
Cuacos M, H. Franklin FC, Heckmann S. 2015. Atypical centromeres in plants-what they can tell us. Frontiers in Plant Science 6: 913.
Dellaporta SL, Wood J, Hicks JB. 1983. A plant DNA minipreparation: version II. Plant Molecular Biology Reports 1: 19-21.
Demidov D, Schubert V, Kumke K, Weiss O, Karimi-Ashtiyani R, Buttlar J, Heckmann S, Wanner G, Dong Q, Han F et al. 2014. Anti-phosphorylated histone H2AThr120: a universal microscopic marker for centromeric chromatin of mono- and holocentric plant species. Cytogenetic and Genome Research 143: 150-156.
Devos KM, Brown JKM, Bennetzen JL. 2002. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Research 12: 1075-1079.
Doležel J, Greilhuber J, Suda J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2: 2233-2244.
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797.
El Baidouri M, Carpentier MC, Cooke R, Gao D, Lasserre E, Llauro C, Mirouze M, Picault N, Jackson SA, Panaud O. 2014. Widespread and frequent horizontal transfers of transposable elements in plants. Genome Research 24: 831-838.
Fleischmann A, Michael TP, Rivadavia F, Sousa A, Wang W, Temsch EM, Greilhuber J, Müller KF, Heubl G. 2014. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Annals of Botany 114: 1651-1663.
Gaiero P, Vaio M, Peters SA, Schranz ME, De Jong H, Speranza PR. 2019. Comparative analysis of repetitive sequences among species from the potato and the tomato clades. Annals of Botany 123: 521-532.
Galindo-González L, Mhiri C, Deyholos MK, Grandbastien MA. 2017. LTR-retrotransposons in plants: engines of evolution. Gene 626: 14-25.
García MA. 2001. A new western Mediterranean species of Cuscuta (Convolvulaceae) confirms the presence of holocentric chromosomes in subgenus Cuscuta. Botanical Journal of the Linnean Society 135: 169-178.
García MA, Costea M, Kuzmina M, Stefanović S. 2014. Phylogeny, character evolution, and biogeography of Cuscuta (Dodders; Convolvulaceae) inferred from coding plastid and nuclear sequences. American Journal of Botany 101: 670-690.
Gorinšek B, Gubenšek F, Kordiš D. 2004. Evolutionary genomics of chromoviruses in Eukaryotes. Molecular Biology and Evolution 21: 781-798.
Gouy M, Guindon S, Gascuel O. 2010. Sea view version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27: 221-224.
Grover CE, Wendel JF. 2010. Recent insights into mechanisms of genome size change in plants. Journal of Botany 2010: 1-8.
Gruner A, Hoverter N, Smith T, Knight CA. 2010. Genome size is a strong predictor of root meristem growth rate. Journal of Botany 2010: 1-4.
Guerra M, García MA. 2004. Heterochromatin and rDNA sites distribution in the holocentric chromosomes of Cuscuta approximata Bab. (Convolvulaceae). Genome 47: 134-140.
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307-321.
Heckmann S, Jankowska M, Schubert V, Kumke K, Ma W, Houben A. 2014. Alternative meiotic chromatid segregation in the holocentric plant Luzula elegans. Nature Communications 5: 4979.
Heckmann S, Macas J, Kumke K, Fuchs J, Schubert V, Ma L, Novák P, Neumann P, Taudien S, Platzer M et al. 2013. The holocentric species Luzula elegans shows interplay between centromere and large-scale genome organization. The Plant Journal 73: 555-565.
Heslop-Harrison JSP, Schwarzacher T. 2011. Organisation of the plant genome in chromosomes. The Plant Journal 66: 18-33.
Hoshino A, Jayakumar V, Nitasaka E, Toyoda A, Noguchi H, Itoh T, Shin T, Minakuchi Y, Koda Y, Nagano AJ et al. 2016. Genome sequence and analysis of the Japanese morning glory Ipomoea nil. Nature Communications 7: 1-10.
Huson DH, Scornavacca C. 2012. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Systematic Biology 61: 1061-1067.
Kelly LJ, Renny-Byfield S, Pellicer J, Macas J, Novák P, Neumann P, Lysák MA, Day PD, Berger M, Fay MF et al. 2015. Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. New Phytologist 208: 596-607.
Kim G, Westwood JH. 2015. Macromolecule exchange in Cuscuta-host plant interactions. Current Opinion in Plant Biology 26: 20-25.
Kim JS, Kim J-H. 2018. Updated molecular phylogenetic analysis, dating and biogeographical history of the lily family (Liliaceae: Liliales). Botanical Journal of the Linnean Society 187: 579-593.
Kubešová M, Moravcová L, Suda J, Jarošík V, Pyšek P. 2010. Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82: 81-96.
Lefort V, Longueville JE, Gascuel O. 2017. SMS: Smart model selection in PhyML. Molecular Biology and Evolution 34: 2422-2424.
Love A. 1976. IOPB chromosome number reports LIII. TAXON 25: 483-500.
Macas J, Novák P, Pellicer J, Čížková J, Koblížková A, Neumann P, Fuková I, Doležel J, Kelly LJ, Leitch IJ. 2015. In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS ONE 10: e0143424.
Machado MA, Zetsche K. 1990. A structural, functional and molecular analysis of plastids of the holoparasites Cuscuta reflexa and Cuscuta europaea. Planta 181: 91-96.
Marques A, Ribeiro T, Neumann P, Macas J, Novák P, Schubert V, Pellino M, Fuchs J, Ma W, Kuhlmann M et al. 2015. Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. Proceedings of the National Academy of Sciences, USA 112: 13633-13638.
McNeal JR, Arumugunathan K, Kuehl JV, Boore JL, Depamphilis CW. 2007. Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae). BMC Biology 5: 55.
Mello B. 2018. Estimating timetrees with MEGA and the TimeTree resource. Molecular Biology and Evolution 35: 2334-2342.
Melters DP, Paliulis LV, Korf IF, Chan SWL. 2012. Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Research 20: 579-593.
Moore TE, Verboom GA, Forest F. 2010. Phylogenetics and biogeography of the parasitic genus Thesium L. (Santalaceae), with an emphasis on the Cape of South Africa. Botanical Journal of the Linnean Society 162: 435-452.
Nagaki K, Song J, Stupar RM, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones KM, Dawe RK et al. 2003. Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163: 759-770.
Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, Hobza R, Widmer A, Doležel J, Macas J. 2011. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mobile DNA 2: 4.
Neumann P, Novák P, Hoštáková N, Macas J. 2019. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mobile DNA 10: 1.
Novák P, Ávila Robledillo L, Koblížková A, Vrbová I, Neumann P, Macas J. 2017. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Research 45: e111.
Novák P, Guignard MS, Neumann P, Kelly LJ, Mlinarec J, Koblížková A, Dodsworth S, Kovařík A, Pellicer J, Wang W et al. 2020. Repeat-sequence turnover shifts fundamentally in species with large genomes. Nature Plants 6: 1325-1329.
Novák P, Hoštáková N, Neumann P, Macas J. 2019. Domain based ANnotation of Transposable Elements - DANTE. [WWW document] URL http://repeatexplorer.org/?page_id=832 [accessed 15 June 2020].
Novák P, Hřibová E, Neumann P, Koblížková A, Doležel J, Macas J. 2014. Genome-wide analysis of repeat diversity across the family Musaceae. PLoS ONE 9: e98918.
Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. 2013. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29: 792-793.
Oliveira L, Neumann P, Jang T, Klemme S, Schubert V, Koblížková A, Houben A, Macas J. 2020. Mitotic spindle attachment to the holocentric chromosomes of Cuscuta europaea does not correlate with the distribution of CENH3 chromatin. Frontiers in Plant Science 10: 1799.
Pazy B, Plitmann U. 1987. Persisting demibivalents: a unique meiotic behaviour in Cuscuta babylonica Choisy. Genome 29: 63-66.
Pazy B, Plitmann U. 1991. Unusual chromosome separation in meiosis of Cuscuta L. Genome 34: 533-536.
Pazy B, Plitmann U. 1994. Holocentric chromosome behaviour in Cuscuta (Cuscutaceae). Plant Systematics and Evolution 191: 105-109.
Pazy B, Plitmann U. 1995. Chromosome divergence in the genus Cuscuta and its systematic implications. Caryologia 48: 173-180.
Pazy B, Plitmann U. 2002. New perspectives on the mechanisms of chromosome evolution in parasitic flowering plants. Botanical Journal of the Linnean Society 138: 117-122.
Pellicer J, Fay MF, Leitch IJ. 2010. The largest eukaryotic genome of them all? Botanical Journal of the Linnean Society 164: 10-15.
Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. 2018. Genome size diversity and its impact on the evolution of land plants. Genes 9: 88.
Pellicer J, Kelly LJ, Leitch IJ, Zomlefer WB, Fay MF. 2014. A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae. New Phytologist 201: 1484-1497.
Pellicer J, Leitch IJ. 2020. The plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist 226: 301-305.
Piednoël M, Aberer AJ, Schneeweiss GM, Macas J, Novák P, Gundlach H, Temsch EM, Renner SS. 2012. Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Molecular Biology and Evolution 29: 3601-3611.
Plohl M, Meštrović N, Mravinac B. 2014. Centromere identity from the DNA point of view. Chromosoma 123: 313-325.
Raman G, Park S, Lee EM, Park S. 2019. Evidence of mitochondrial DNA in the chloroplast genome of Convallaria keiskei and its subsequent evolution in the Asparagales. Scientific Reports 9: 5028.
Revill MJW, Stanley S, Hibberd JM. 2005. Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta. Journal of Experimental Botany 56: 2477-2486.
Ribeiro T, Marques A, Novák P, Schubert V, Vanzela ALL, Macas J, Houben A, Pedrosa-Harand A. 2017. Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species. Chromosoma 126: 325-335.
Särkinen T, Bohs L, Olmstead RG, Knapp S. 2013. A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evolutionary Biology 13: 214.
Sobreira TJP, Durham AM, Gruber A. 2006. TRAP: automated classification, quantification and annotation of tandemly repeated sequences. Bioinformatics 22: 361-362.
Stefanović S, Kuzmina M, Costea M. 2007. Delimitation of major lineages within Cuscuta subgenus Grammica (Convolvulaceae) using plastid and nuclear DNA sequences. American Journal of Botany 94: 568-589.
Sun G, Xu Y, Liu H, Sun T, Zhang J, Hettenhausen C, Shen G, Qi J, Qin Y, Li J et al. 2018. Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis. Nature Communications 9: 2683.
Vinnersten A, Bremer K. 2001. Age and biogeography of major clades in Liliales. American Journal of Botany 88: 1695-1703.
Vitte C, Panaud O. 2005. LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenetic and Genome Research 110: 91-107.
Vogel A, Schwacke R, Denton AK, Usadel B, Hollmann J, Fischer K, Bolger A, Schmidt MH-W, Bolger ME, Gundlach H et al. 2018. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nature Communications 9: 2515.
Wang W, Lin L, Xiang X-G, Ortiz RDC, Liu Y, Xiang K-L, Yu S-X, Xing Y-W, Chen Z-D. 2016. The rise of angiosperm-dominated herbaceous floras: insights from Ranunculaceae. Scientific Reports 6: 27259.
Wanner G, Schroeder-Reiter E, Ma W, Houben A, Schubert V. 2015. The ultrastructure of mono- and holocentric plant centromeres: an immunological investigation by structured illumination microscopy and scanning electron microscopy. Chromosoma 124: 503-517.
Yang J, Moeinzadeh M-H, Kuhl H, Helmuth J, Xiao P, Haas S, Liu G, Zheng J, Sun Z, Fan W et al. 2017. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nature Plants 3: 696-703.
Yang Z, Wafula EK, Kim G, Shahid S, McNeal JR, Ralph PE, Timilsena PR, Yu W, Kelly EA, Zhang H et al. 2019. Convergent horizontal gene transfer and cross-talk of mobile nucleic acids in parasitic plants. Nature Plants 5: 991-1001.
Yang Z, Zhang Y, Wafula EK, Honaas LA, Ralph PE, Jones S, Clarke CR, Liu S, Su C, Zhang H et al. 2016. Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation. Proceedings of the National Academy of Sciences, USA 113: E7010-E7019.
Zhang D, Qi J, Yue J, Huang J, Sun T, Li S, Wen J-F, Hettenhausen C, Wu J, Wang L et al. 2014. Root parasitic plant Orobanche aegyptiaca and shoot parasitic plant Cuscuta australis obtained Brassicaceae-specific strictosidine synthase-like genes by horizontal gene transfer. BMC Plant Biology 14: 19.
Zonneveld BJM. 2010. New record holders for maximum genome size in eudicots and monocots. Journal of Botany 2010: 527357.
Disruption of the standard kinetochore in holocentric Cuscuta species
Chromosome size matters: genome evolution in the cyperid clade
Centromere size scales with genome size across Eukaryotes
Holocentric Chromosomes Probably Do Not Prevent Centromere Drive in Cyperaceae