Plasma lipidomic profiles of kidney, breast and prostate cancer patients differ from healthy controls
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34645896
PubMed Central
PMC8514434
DOI
10.1038/s41598-021-99586-1
PII: 10.1038/s41598-021-99586-1
Knihovny.cz E-zdroje
- MeSH
- časná detekce nádoru MeSH
- dospělí MeSH
- heparin chemie MeSH
- hmotnostní spektrometrie MeSH
- ledviny metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- lipidomika * MeSH
- lipidy chemie MeSH
- mladý dospělý MeSH
- nádorové biomarkery metabolismus MeSH
- nádory prostaty metabolismus MeSH
- nádory prsu metabolismus MeSH
- plocha pod křivkou MeSH
- prospektivní studie MeSH
- prostata metabolismus MeSH
- prsy metabolismus MeSH
- regulace genové exprese u nádorů MeSH
- reprodukovatelnost výsledků MeSH
- retrospektivní studie MeSH
- ROC křivka MeSH
- senioři MeSH
- statistické modely MeSH
- studie případů a kontrol MeSH
- superkritická fluidní chromatografie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- heparin MeSH
- lipidy MeSH
- nádorové biomarkery MeSH
Early detection of cancer is one of the unmet needs in clinical medicine. Peripheral blood analysis is a preferred method for efficient population screening, because blood collection is well embedded in clinical practice and minimally invasive for patients. Lipids are important biomolecules, and variations in lipid concentrations can reflect pathological disorders. Lipidomic profiling of human plasma by the coupling of ultrahigh-performance supercritical fluid chromatography and mass spectrometry is investigated with the aim to distinguish patients with breast, kidney, and prostate cancers from healthy controls. The mean sensitivity, specificity, and accuracy of the lipid profiling approach were 85%, 95%, and 92% for kidney cancer; 91%, 97%, and 94% for breast cancer; and 87%, 95%, and 92% for prostate cancer. No association of statistical models with tumor stage is observed. The statistically most significant lipid species for the differentiation of cancer types studied are CE 16:0, Cer 42:1, LPC 18:2, PC 36:2, PC 36:3, SM 32:1, and SM 41:1 These seven lipids represent a potential biomarker panel for kidney, breast, and prostate cancer screening, but a further verification step in a prospective study has to be performed to verify clinical utility.
Zobrazit více v PubMed
Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
National Cancer Institute. Cancer staging. Cancer.gov. https://www.cancer.gov/about-cancer/understanding/what-is-cancer. Updated 9 Feb 2021.
Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent global patterns in prostate cancer incidence and mortality rates. Eur. Urol. 2020;77:38–52. doi: 10.1016/j.eururo.2019.08.005. PubMed DOI
Ahmad, A. Breast Cancer Statistics: Recent Trends In Breast Cancer Metastasis and Drug Resistance: Challenges and Progress (ed. Ahmad, A.) 1–7 (Springer, 2019).
Znaor A, Lortet-Tieulent J, Laversanne M, Jemal A, Bray F. International variations and trends in renal cell carcinoma incidence and mortality. Eur. Urol. 2015;67:519–530. doi: 10.1016/j.eururo.2014.10.002. PubMed DOI
Li P, et al. Regional geographic variations in kidney cancer incidence rates in European countries. Eur. Urol. 2015;67:1134–1141. doi: 10.1016/j.eururo.2014.11.001. PubMed DOI
Descotes J-L. Diagnosis of prostate cancer. Asian J. Urol. 2019;6:129–136. doi: 10.1016/j.ajur.2018.11.007. PubMed DOI PMC
Jafari SH, et al. Breast cancer diagnosis: Imaging techniques and biochemical markers. J. Cell. Physiol. 2018;233:5200–5213. doi: 10.1002/jcp.26379. PubMed DOI
Capitanio U, Montorsi F. Renal cancer. Lancet. 2016;387:894–906. doi: 10.1016/S0140-6736(15)00046-X. PubMed DOI
Ljungberg B, et al. EAU guidelines on renal cell carcinoma: the 2010 update. Eur. Urol. 2010;58:398–406. doi: 10.1016/j.eururo.2010.06.032. PubMed DOI
Lennon AM, et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science. 2020;369:eabb9601. doi: 10.1126/science.abb9601. PubMed DOI PMC
Amin MB, et al. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017;67:93–99. doi: 10.3322/caac.21388. PubMed DOI
Tanos R, Thierry AR. Clinical relevance of liquid biopsy for cancer screening. Transl. Cancer Res. 2018;7:S105–S129. doi: 10.21037/tcr.2018.01.31. DOI
Chen M, Zhao HY. Next-generation sequencing in liquid biopsy: Cancer screening and early detection. Hum. Genomics. 2019;13:10. doi: 10.1186/s40246-019-0220-8. PubMed DOI PMC
Cohen JD, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926. doi: 10.1126/science.aar3247. PubMed DOI PMC
Zhang L, Han X, Wang X. Is the clinical lipidomics a potential goldmine? Cell Biol. Toxicol. 2018;34:421–423. doi: 10.1007/s10565-018-9441-1. PubMed DOI PMC
Kordalewska M, et al. Multiplatform metabolomics provides insight into the molecular basis of chronic kidney disease. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2019;1117:49–57. doi: 10.1016/j.jchromb.2019.04.003. PubMed DOI
Yang K, Han X. Lipidomics: Techniques, applications, and outcomes related to biomedical sciences. Trends Biochem. Sci. 2016;41:954–969. doi: 10.1016/j.tibs.2016.08.010. PubMed DOI PMC
Wolrab D, Jirásko R, Chocholoušková M, Peterka O, Holčapek M. Oncolipidomics: Mass spectrometric quantitation of lipids in cancer research. Trends Anal. Chem.: TrAC. 2019;120:115480. doi: 10.1016/j.trac.2019.04.012. DOI
Buszewska-Forajta M, et al. Lipidomics as a diagnostic tool for prostate cancer. Cancers. 2021 doi: 10.3390/cancers13092000. PubMed DOI PMC
Holčapek M, Liebisch G, Ekroos K. Lipidomic analysis. Anal. Chem. 2018;90:4249–4257. doi: 10.1021/acs.analchem.7b05395. PubMed DOI
Liebisch G, et al. Lipidomics needs more standarization. Nat. Metab. 2019;1:745–747. doi: 10.1038/s42255-019-0094-z. PubMed DOI
Wolrab, D. et al. Lipidomic profiling of human serum enables detection of pancreatic cancer Nat. Com., revision, preprint available at medRxiv: https://www.medrxiv.org/content/10.1101/2021.01.22.21249767v1 (2021). PubMed DOI PMC
Holčapek, M., Cífková, E., Lísa, M., Jirásko, R., Wolrab, D., Hrnčiarová, T. A Method of Diagnosing Pancreatic Cancer Based on Lipidomic Analysis of a Body Fluid. European patent EP3514545 (granted), date of filling 22.1.2018.
Holčapek, M., Wolrab, D., Jirásko, R., Cífková, E. A Method of Diagnosing Cancer Based on Lipidomic Analysis of a Body Fluid. EP18174963.1 (pending), filing date 29.5.2018.
Sales S, et al. Gender, contraceptives and individual metabolic predisposition shape a healthy plasma lipidome. Sci. Rep. 2016;6:27710. doi: 10.1038/srep27710. PubMed DOI PMC
West AL, et al. Lipidomic analysis of plasma from healthy men and women shows phospholipid class and molecular species differences between sexes. Lipids. 2021;56:229–242. doi: 10.1002/lipd.12293. PubMed DOI PMC
Chen X, et al. Plasma lipidomics profiling identified lipid biomarkers in distinguishing early-stage breast cancer from benign lesions. Oncotarget. 2016;7:36622–36631. doi: 10.18632/oncotarget.9124. PubMed DOI PMC
Cala MP, et al. Multiplatform plasma metabolic and lipid fingerprinting of breast cancer: A pilot control-case study in Colombian Hispanic women. PLoS ONE. 2018;13:e0190958. doi: 10.1371/journal.pone.0190958. PubMed DOI PMC
Cui M, Wang Q, Chen G. Serum metabolomics analysis reveals changes in signaling lipids in breast cancer patients. Biomed. Chromatogr. 2016;30:42–47. doi: 10.1002/bmc.3556. PubMed DOI
Guo Y, et al. Simultaneous Quantification of Serum Multi-Phospholipids as Potential Biomarkers for Differentiating Different Pathophysiological states of lung, stomach, intestine, and pancreas. J. Cancer. 2017;8:2191–2204. doi: 10.7150/jca.19128. PubMed DOI PMC
Lin L, et al. LC-MS-based serum metabolic profiling for genitourinary cancer classification and cancer type-specific biomarker discovery. Proteomics. 2012;12:2238–2246. doi: 10.1002/pmic.201200016. PubMed DOI
Yu Z, et al. Global lipidomics identified plasma lipids as novel biomarkers for early detection of lung cancer. Oncotarget. 2017;8:107899–107906. doi: 10.18632/oncotarget.22391. PubMed DOI PMC
Guo Y, et al. Probing gender-specific lipid metabolites and diagnostic biomarkers for lung cancer using Fourier transform ion cyclotron resonance mass spectrometry. Clin. Chim. Acta. 2012;414:135–141. doi: 10.1016/j.cca.2012.08.010. PubMed DOI
Zhou X, et al. Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics. PLoS ONE. 2012;7:e48889. doi: 10.1371/journal.pone.0048889. PubMed DOI PMC
Patel N, Vogel R, Chandra-Kuntal K, Glasgow W, Kelavkar U. A novel three serum phospholipid panel differentiates normal individuals from those with prostate cancer. PLoS ONE. 2014;9:e88841. doi: 10.1371/journal.pone.0088841. PubMed DOI PMC
Bielecka-Dbrowa A, Hannam S, Rysz J, Banach M. Malignancy-associated dyslipidemia. Open Cardiovasc. Med. J. 2011 doi: 10.2174/1874192401105010035. PubMed DOI PMC
Bergheanu SC, et al. Lipidomic approach to evaluate rosuvastatin and atorvastatin at various dosages: Investigating differential effects among statins. Curr. Med. Res. Opin. 2008;24:2477–2487. doi: 10.1185/03007990802321709. PubMed DOI
Tiwary S, Berzofsky JA, Terabe M. Altered lipid tumor environment and its potential effects on NKT cell function in tumor immunity. Front. Immun. 2019 doi: 10.3389/fimmu.2019.02187. PubMed DOI PMC
Gil-De-Gómez L, Balgoma D, Montero O. Lipidomic-based advances in diagnosis and modulation of immune response to cancer. Metabolites. 2020;10:1–15. doi: 10.3390/metabo10080332. PubMed DOI PMC
Guo R, et al. The function and mechanism of lipid molecules and their roles in the diagnosis and prognosis of breast cancer. Molecules. 2020 doi: 10.3390/molecules25204864. PubMed DOI PMC
Louie SM, Roberts LS, Mulvihill MM, Luo K, Nomura DK. Cancer cells incorporate and remodel exogenous palmitate into structural and oncogenic signaling lipids. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 1831;1566–1572:2013. doi: 10.1016/j.bbalip.2013.07.008. PubMed DOI PMC
Cui M, Wang Q, Chen G. Serum metabolomics analysis reveals changes in signaling lipids in breast cancer patients. Biomed. Chromatogr. 2016;30:42–47. doi: 10.1002/bmc.3556. PubMed DOI
Sheridan M, Ogretmen B. The role of ceramide metabolism and signaling in the regulation of mitophagy and cancer therapy. Cancers. 2021 doi: 10.3390/cancers13102475. PubMed DOI PMC
Law SH, et al. An updated review of lysophosphatidylcholine metabolism in human diseases. Int. J. Mol. Sci. 2019 doi: 10.3390/ijms20051149. PubMed DOI PMC
Rolin J, Maghazachi AA. Effects of lysophospholipids on tumor microenvironment. Cancer Microenviron. 2011;4:393–403. doi: 10.1007/s12307-011-0088-1. PubMed DOI PMC
Ahn HS, et al. Convergence of plasma metabolomics and proteomics analysis to discover signatures of high-grade serous ovarian cancer. Cancers. 2020;12:1–20. doi: 10.3390/cancers12113447. PubMed DOI PMC
Liu J, et al. Serum metabolomic patterns in patients with autoimmune thyroid disease. Endocr. Pract. 2020;26:82–96. doi: 10.4158/EP-2019-0162. PubMed DOI
Kartsoli S, Kostara CE, Tsimihodimos V, Bairaktari ET, Christodoulou DK. Lipidomics in non-alcoholic fatty liver disease. World J. Hepatol. 2020;12:436–450. doi: 10.4254/wjh.v12.i8.436. PubMed DOI PMC
Marczak L, et al. Mass spectrometry-based lipidomics reveals differential changes in the accumulated lipid classes in chronic kidney disease. Metabolites. 2021 doi: 10.3390/metabo11050275. PubMed DOI PMC
Wolrab D, Chocholoušková M, Jirásko R, Peterka O, Holčapek M. Validation of lipidomic analysis of human plasma and serum by supercritical fluid chromatography–mass spectrometry and hydrophilic interaction liquid chromatography–mass spectrometry. Anal. Bioanal. Chem. 2020;412:2375–2388. doi: 10.1007/s00216-020-02473-3. PubMed DOI
Lísa M, Holčapek M. High-throughput and comprehensive lipidomic analysis using ultrahigh-performance supercritical fluid chromatography-mass spectrometry. Anal. Chem. 2015;87:7187–7195. doi: 10.1021/acs.analchem.5b01054. PubMed DOI
Wolrab D, Cífková E, et al. LipidQuant tool for automated data processing in lipid class separation-mass spectrometry workflows. Bioinformatics. 2021 doi: 10.1093/bioinformatics/btab644. PubMed DOI
Lísa M, Cífková E, Khalikova M, Ovčačíková M, Holčapek M. Lipidomic analysis of biological samples: Comparison of liquid chromatography, supercritical fluid chromatography and direct infusion mass spectrometry methods. J. Chromatogr. A. 2017;1525:96–108. doi: 10.1016/j.chroma.2017.10.022. PubMed DOI
Wang M, Wang Ch, Han X. Selection of internal standards for accurate quantification of complex lipid species in biological extracts by electrospray ionization mass spectrometry—What, how and why? Mass Spectrom. Rev. 2016;36:693–714. doi: 10.1002/mas.21492. PubMed DOI PMC
Eastment HT, Krzanowski WJ. Cross-validatory choice of the number of components from a principal component analysis. Technometrics. 1982;24:73–77. doi: 10.2307/1267581. DOI
Martens, H. & Naes, T. M. v. C., Wiley, Chichester (1989).
Yu G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinform. 2020;69:e96. doi: 10.1002/cpbi.96. PubMed DOI
Comprehensive characterization of complex glycosphingolipids in human pancreatic cancer tissues