Altered Plasma, Urine, and Tissue Profiles of Sulfatides and Sphingomyelins in Patients with Renal Cell Carcinoma

. 2022 Sep 23 ; 14 (19) : . [epub] 20220923

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36230546

Grantová podpora
No. 18-12204S Czech Science Foundation

PURPOSE: RCC, the most common type of kidney cancer, is associated with high mortality. A non-invasive diagnostic test remains unavailable due to the lack of RCC-specific biomarkers in body fluids. We have previously described a significantly altered profile of sulfatides in RCC tumor tissues, motivating us to investigate whether these alterations are reflected in collectible body fluids and whether they can enable RCC detection. METHODS: We collected and further analyzed 143 plasma, 100 urine, and 154 tissue samples from 155 kidney cancer patients, together with 207 plasma and 70 urine samples from 214 healthy controls. RESULTS: For the first time, we show elevated concentrations of lactosylsulfatides and decreased levels of sulfatides with hydroxylated fatty acyls in body fluids of RCC patients compared to controls. These alterations are emphasized in patients with the advanced tumor stage. Classification models are able to distinguish between controls and patients with RCC. In the case of all plasma samples, the AUC for the testing set was 0.903 (0.844-0.954), while for urine samples it was 0.867 (0.763-0.953). The models are able to efficiently detect patients with early- and late-stage RCC based on plasma samples as well. The test set sensitivities were 80.6% and 90%, and AUC values were 0.899 (0.832-0.952) and 0.981 (0.956-0.998), respectively. CONCLUSION: Similar trends in body fluids and tissues indicate that RCC influences lipid metabolism, and highlight the potential of the studied lipids for minimally-invasive cancer detection, including patients with early tumor stages, as demonstrated by the predictive ability of the applied classification models.

Zobrazit více v PubMed

Capitanio U., Bensalah K., Bex A., Boorjian S.A., Bray F., Coleman J., Gore J.L., Sun M., Wood C., Russo P. Epidemiology of Renal Cell Carcinoma. Eur. Urol. 2019;75:74–84. doi: 10.1016/j.eururo.2018.08.036. PubMed DOI PMC

Li P., Znaor A., Holcatova I., Fabianova E., Mates D., Wozniak M.B., Ferlay J., Scelo G. Regional Geographic Variations in Kidney Cancer Incidence Rates in European Countries. Eur. Urol. 2015;67:1134–1141. doi: 10.1016/j.eururo.2014.11.001. PubMed DOI

Padala S.A., Barsouk A., Thandra K.C., Saginala K., Mohammed A., Vakiti A., Rawla P., Barsouk A. Epidemiology of Renal Cell Carcinoma. World J. Oncol. 2020;11:79–87. doi: 10.14740/wjon1279. PubMed DOI PMC

Znaor A., Lortet-Tieulent J., Laversanne M., Jemal A., Bray F. International Variations and Trends in Renal Cell Carcinoma Incidence and Mortality. Eur. Urol. 2015;67:519–530. doi: 10.1016/j.eururo.2014.10.002. PubMed DOI

Cairns P. Renal cell carcinoma. Cancer Biomark. 2010;9:461–473. doi: 10.3233/CBM-2011-0176. PubMed DOI PMC

National Cancer Institute Tumor Markers. [(accessed on 29 July 2022)]; Available online: https://www.cancer.gov/about-cancer/diagnosis-staging/diagnosis/tumor-markers-list.

Wolrab D., Jirásko R., Chocholoušková M., Peterka O., Holčapek M. Oncolipidomics: Mass spectrometric quantitation of lipids in cancer research. Trac-Trends Anal. Chem. 2019;120:115480. doi: 10.1016/j.trac.2019.04.012. DOI

Schaeffeler E., Büttner F., Reustle A., Klumpp V., Winter S., Rausch S., Fisel P., Hennenlotter J., Kruck S., Stenzl A., et al. Metabolic and Lipidomic Reprogramming in Renal Cell Carcinoma Subtypes Reflects Regions of Tumor Origin. Eur. Urol. Focus. 2019;5:608–618. doi: 10.1016/j.euf.2018.01.016. PubMed DOI

Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy. Nat. Rev. Cancer. 2018;18:33–50. doi: 10.1038/nrc.2017.96. PubMed DOI PMC

Wolrab D., Jirásko R., Cífková E., Höring M., Mei D., Chocholoušková M., Peterka O., Idkowiak J., Hrnčiarová T., Kuchař L., et al. Lipidomic profiling of human serum enables detection of pancreatic cancer. Nat. Commun. 2022;13:124. doi: 10.1038/s41467-021-27765-9. PubMed DOI PMC

Wolrab D., Jirásko R., Peterka O., Idkowiak J., Chocholoušková M., Vaňková Z., Hořejší K., Brabcová I., Vrána D., Študentová H., et al. Plasma lipidomic profiles of kidney, breast and prostate cancer patients differ from healthy controls. Sci. Rep. 2021;11:20322. doi: 10.1038/s41598-021-99586-1. PubMed DOI PMC

Porubsky S., Nientiedt M., Kriegmair M.C., Siemoneit J.H.H., Sandhoff R., Jennemann R., Borgmann H., Gaiser T., Weis C.A., Erben P., et al. The prognostic value of galactosylceramide-sulfotransferase (Gal3ST1) in human renal cell carcinoma. Sci. Rep. 2021;11:10926. doi: 10.1038/s41598-021-90381-6. PubMed DOI PMC

Takahashi T., Suzuki T. Role of sulfatide in normal and pathological cells and tissues. J. Lipid Res. 2012;53:1437–1450. doi: 10.1194/jlr.R026682. PubMed DOI PMC

Kim I.C., Bang G., Lee J.H., Kim K.P., Kim Y.H., Kim H.K., Chung J. Low C24-OH and C22-OH sulfatides in human renal cell carcinoma. J. Mass Spectrom. 2014;49:409–416. doi: 10.1002/jms.3358. PubMed DOI

Makhlouf A.M., Fathalla M.M., Zakhary M.A., Makarem M.H. Sulfatides in ovarian tumors: Clinicopathological correlates. Int. J. Gynecol. Cancer. 2004;14:89–93. doi: 10.1136/ijgc-00009577-200401000-00011. PubMed DOI

Morichika H., Hamanaka Y., Tai T., Ishizuka I. Sulfatides as a predictive factor of lymph node metastasis in patients with colorectal adenocarcinoma. Cancer. 1996;78:43–47. doi: 10.1002/(SICI)1097-0142(19960701)78:1<43::AID-CNCR8>3.0.CO;2-I. PubMed DOI

Sakakibara N., Gasa S., Kamio K., Makita A., Koyanagi T. Association of Elevated Sulfatides and Sulfotransferase Activities with Human Renal-Cell Carcinoma. Cancer Res. 1989;49:335–339. PubMed

Tanaka K., Mikami M., Aoki D., Kiguchi K., Ishiwata I., Iwamori M. Expression of sulfatide and sulfated lactosylceramide among histological types of human ovarian carcinomas. Hum. Cell. 2015;28:37–43. doi: 10.1007/s13577-014-0100-4. PubMed DOI

Jirásko R., Holčapek M., Khalikova M., Vrána D., Študent V., Prouzová Z., Melichar B. MALDI Orbitrap Mass Spectrometry Profiling of Dysregulated Sulfoglycosphingolipids in Renal Cell Carcinoma Tissues. J. Am. Soc. Mass Spectrom. 2017;28:1562–1574. doi: 10.1007/s13361-017-1644-9. PubMed DOI

Honke K., Tsuda M., Hirahara Y., Miyao N., Tsukamoto T., Satoh M., Wada Y. Cancer-associated expression of glycolipid sulfotransferase gene in human renal cell carcinoma cells. Cancer Res. 1998;58:3800–3805. PubMed

Kobayashi T., Honke K., Kamio K., Sakakibara N., Gasa S., Miyao N., Tsukamoto T., Ishizuka I., Miyazaki T., Makita A. Sulfolipids and Glycolipid Sulfotransferase Activities in Human Renal-Cell Carcinoma-Cells. Br. J. Cancer. 1993;67:76–80. doi: 10.1038/bjc.1993.12. PubMed DOI PMC

Wu X.Z., Honke K., Zhang Y.L., Zha X.L., Taniguchi N. Lactosylsulfatide expression in hepatocellular carcinoma cells enhances cell adhesion to vitronectin and intrahepatic metastasis in nude mice. Int. J. Cancer. 2004;110:504–510. doi: 10.1002/ijc.20127. PubMed DOI

Hubert M., Vandervieren E. An adjusted boxplot for skewed distributions. Comput. Stat. Data Anal. 2008;52:5186–5201. doi: 10.1016/j.csda.2007.11.008. DOI

American Cancer Society Cancer Staging. [(accessed on 29 July 2022)]. Available online: https://www.cancer.org/treatment/understanding-your-diagnosis/staging.html.

Lipid Maps Lipid Classsification System. [(accessed on 29 July 2022)]. Available online: https://www.lipidmaps.org/data/classification/LM_classification_exp.php.

Liebisch G., Fahy E., Aoki J., Dennis E.A., Durand T., Ejsing C.S., Fedorova M., Feussner I., Griffiths W.J., Kofeler H., et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020;61:1539–1555. doi: 10.1194/jlr.S120001025. PubMed DOI PMC

Liebisch G., Vizcaino J.A., Kofeler H., Trotzmuller M., Griffiths W.J., Schmitz G., Spener F., Wakelam M.J.O. Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 2013;54:1523–1530. doi: 10.1194/jlr.M033506. PubMed DOI PMC

Sheridan M., Ogretmen B. The Role of Ceramide Metabolism and Signaling in the Regulation of Mitophagy and Cancer Therapy. Cancers. 2021;13:2475. doi: 10.3390/cancers13102475. PubMed DOI PMC

Pruett S.T., Bushnev A., Hagedorn K., Adiga M., Haynes C.A., Sullards M.C., Liotta D.C., Merrill A.H. Thematic review series: Sphingolipids—Biodiversity of sphingoid bases (“sphingosines”) and related amino alcohols. J. Lipid Res. 2008;49:1621–1639. doi: 10.1194/jlr.R800012-JLR200. PubMed DOI PMC

Alderson N.L., Rembiesa B.M., Walla M.D., Bielawska A., Bielawski J., Hama H. The human FA2H gene encodes a fatty acid 2-hydroxylase. J. Biol. Chem. 2004;279:48562–48568. doi: 10.1074/jbc.M406649200. PubMed DOI

Yao Y.Z., Yang X.Q., Sun L., Sun S.S., Huang X.H., Zhou D.Y., Li T.T., Zhang W., Abumrad N.A., Zhu X.G., et al. Fatty acid 2-hydroxylation inhibits tumor growth and increases sensitivity to cisplatin in gastric cancer. Ebiomedicine. 2019;41:256–267. doi: 10.1016/j.ebiom.2019.01.066. PubMed DOI PMC

Lemay A.M., Courtemanche O., Couttas T.A., Jamsari G., Gagne A., Bosse Y., Joubert P., Don A.S., Marsolais D. High FA2H and UGT8 transcript levels predict hydroxylated hexosylceramide accumulation in lung adenocarcinoma. J. Lipid Res. 2019;60:1776–1786. doi: 10.1194/jlr.M093955. PubMed DOI PMC

Qi T., Wu D.D., Duan Z.P., Chen C., Qiu J.J., Kang J. Overexpression of Fatty Acid 2-Hydroxylase is Associated with an Increased Sensitivity to Cisplatin by Ovarian Cancer and Better Prognoses. Genet. Test. Mol. Biomark. 2020;24:632–640. doi: 10.1089/gtmb.2019.0259. PubMed DOI

Sun L., Yang X.Q., Huang X.H., Yao Y.Z., Wei X.Y., Yang S.G., Zhou D.Y., Zhang W., Long Z.M., Xu X.Y., et al. 2-Hydroxylation of Fatty Acids Represses Colorectal Tumorigenesis and Metastasis via the YAP Transcriptional Axis. Cancer Res. 2021;81:289–302. doi: 10.1158/0008-5472.CAN-20-1517. PubMed DOI

Dai X.F., Zhang S., Cheng H.Y., Cai D.Y., Chen X., Huang Z.H. FA2H Exhibits Tumor Suppressive Roles on Breast Cancers via Cancer Stemness Control. Front. Oncol. 2019;9:245–254. doi: 10.3389/fonc.2019.01089. PubMed DOI PMC

Yang L.F., Venneti S., Nagrath D. Glutaminolysis: A Hallmark of Cancer Metabolism. Annu. Rev. Biomed. Eng. 2017;19:163–194. doi: 10.1146/annurev-bioeng-071516-044546. PubMed DOI

Pandey N., Lanke V., Vinod P.K. Network-based metabolic characterization of renal cell carcinoma. Sci. Rep. 2020;10:5955. doi: 10.1038/s41598-020-62853-8. PubMed DOI PMC

Shroff E.H., Eberlin L.S., Dang V.M., Gouw A.M., Gabay M., Adam S.J., Bellovin D.I., Tran P.T., Philbrick W.M., Garcia-Ocana A., et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc. Natl. Acad. Sci. USA. 2015;112:6539–6544. doi: 10.1073/pnas.1507228112. PubMed DOI PMC

Stettner P., Bourgeois S., Marsching C., Traykova-Brauch M., Porubsky S., Nordstrom V., Hopf C., Kosters R., Sandhoff R., Wiegandt H., et al. Sulfatides are required for renal adaptation to chronic metabolic acidosis. Proc. Natl. Acad. Sci. USA. 2013;110:9998–10003. doi: 10.1073/pnas.1217775110. PubMed DOI PMC

Marsching C., Rabionet M., Mathow D., Jennemann R., Kremser C., Porubsky S., Bolenz C., Willecke K., Grone H.J., Hopf C., et al. Renal sulfatides: Sphingoid base-dependent localization and region-specific compensation of CerS2-dysfunction. J. Lipid Res. 2014;55:2354–2369. doi: 10.1194/jlr.M051839. PubMed DOI PMC

Shin K.J., Lee Y.J., Yang Y.R., Park S., Suh P.G., Follo M.Y., Cocco L., Ryu S.H. Molecular Mechanisms Underlying Psychological Stress and Cancer. Curr. Pharm. Des. 2016;22:2389–2402. doi: 10.2174/1381612822666160226144025. PubMed DOI

Trah J., Arand J., Oh J., Pagerols-Raluy L., Trochimiuk M., Appl B., Heidelbach H., Vincent D., Saleem M.A., Reinshagen K., et al. Lithocholic bile acid induces apoptosis in human nephroblastoma cells: A non-selective treatment option. Sci. Rep. 2020;10:20349. doi: 10.1038/s41598-020-77436-w. PubMed DOI PMC

Saito K., Arai E., Maekawa K., Ishikawa M., Fujimoto H., Taguchi R., Matsumoto K., Kanai Y., Saito Y. Lipidomic Signatures and Associated Transcriptomic Profiles of Clear Cell Renal Cell Carcinoma. Sci. Rep. 2016;6:28932. doi: 10.1038/srep28932. PubMed DOI PMC

Ding T., Li Z.Q., Hailemariam T., Mukherjee S., Maxfield F.R., Wu M.P., Jiang X.C. SMS overexpression and knockdown: Impact on cellular sphingomyelin and diacylglycerol metabolism, and cell apoptosis. J. Lipid Res. 2008;49:376–385. doi: 10.1194/jlr.M700401-JLR200. PubMed DOI

Zarisfi M., Nguyen T., Nedrow J.R., Le A. The Heterogeneity Metabolism of Renal Cell Carcinomas. Adv. Exp. Med. Biol. 2021;1311:117–126. doi: 10.1007/978-3-030-65768-0_8. PubMed DOI PMC

Israel G.M., Bosniak M.A. How I Do It: Evaluating Renal Masses. Radiology. 2005;236:441–450. doi: 10.1148/radiol.2362040218. PubMed DOI

European Medicines Agency Guideline on Bioanalytical Method Validation, Committee for Medicinal Products for Human Use, 192217/2009, Rev. 1 Corr.2, 21 July 2011. [(accessed on 29 July 2022)]. Available online: https://www.ema.europa.eu/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf.

Food and Drug Administration Guidance for Industry on Bioloanalytical Method Validation, Federal Register, 23 May 2001. [(accessed on 29 July 2022)]; Available online: https://www.federalregister.gov/documents/2001/05/23/01-12908/guidance-for-industry-on-bioanalytical-method-validation-availability.

Bowden J.A., Heckert A., Ulmer C.Z., Jones C.M., Koelmel J.P., Abdullah L., Ahonen L., Alnouti Y., Armando A.M., Asara J.M., et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950–Metabolites in Frozen Human Plasma. J. Lipid Res. 2017;58:2275–2288. doi: 10.1194/jlr.M079012. PubMed DOI PMC

Huynh K., Barlow C.K., Jayawardana K.S., Weir J.M., Mellett N.A., Cinel M., Magliano D.J., Shaw J.E., Drew B.G., Meikle P.J. High-Throughput Plasma Lipidomics: Detailed Mapping of the Associations with Cardiometabolic Risk Factors. Cell Chem. Biol. 2019;26:71–84. doi: 10.1016/j.chembiol.2018.10.008. PubMed DOI

Quehenberger O., Armando A.M., Brown A.H., Milne S.B., Myers D.S., Merrill A.H., Bandyopadhyay S., Jones K.N., Kelly S., Shaner R.L., et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 2010;51:3299–3305. doi: 10.1194/jlr.M009449. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...