Comprehensive characterization of complex glycosphingolipids in human pancreatic cancer tissues

. 2023 Mar ; 299 (3) : 102923. [epub] 20230119

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36681125
Odkazy

PubMed 36681125
PubMed Central PMC9976472
DOI 10.1016/j.jbc.2023.102923
PII: S0021-9258(23)00055-8
Knihovny.cz E-zdroje

Pancreatic ductal adenocarcinoma (PDAC) is one of the most common causes of cancer-related deaths worldwide, accounting for 90% of primary pancreatic tumors with an average 5-year survival rate of less than 10%. PDAC exhibits aggressive biology, which, together with late detection, results in most PDAC patients presenting with unresectable, locally advanced, or metastatic disease. In-depth lipid profiling and screening of potential biomarkers currently appear to be a promising approach for early detection of PDAC or other cancers. Here, we isolated and characterized complex glycosphingolipids (GSL) from normal and tumor pancreatic tissues of patients with PDAC using a combination of TLC, chemical staining, carbohydrate-recognized ligand-binding assay, and LC/ESI-MS2. The major neutral GSL identified were GSL with the terminal blood groups A, B, H, Lea, Leb, Lex, Ley, P1, and PX2 determinants together with globo- (Gb3 and Gb4) and neolacto-series GSL (nLc4 and nLc6). We also revealed that the neutral GSL profiles and their relative amounts differ between normal and tumor tissues. Additionally, the normal and tumor pancreatic tissues differ in type 1/2 core chains. Sulfatides and GM3 gangliosides were the predominant acidic GSL along with the minor sialyl-nLc4/nLc6 and sialyl-Lea/Lex. The comprehensive analysis of GSL in human PDAC tissues extends the GSL coverage and provides an important platform for further studies of GSL alterations; therefore, it could contribute to the development of new biomarkers and therapeutic approaches.

Zobrazit více v PubMed

Schawkat K., Manning M.A., Glickman J.N., Mortele K.J. Pancreatic ductal adenocarcinoma and its variants: pearls and perils. Radiographics. 2020;40:1219–1239. PubMed

Orth M., Metzger P., Gerum S., Mayerle J., Schneider G., Belka C., et al. Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat. Oncol. 2019;14:1–20. PubMed PMC

Sarantis P., Koustas E., Papadimitropoulou A., Papavassiliou A.G., Karamouzis M.V. Pancreatic ductal adenocarcinoma: treatment hurdles, tumor microenvironment and immunotherapy. World J. Gastrointest. Oncol. 2020;12:173–181. PubMed PMC

Kleeff J., Korc M., Apte M., La Vecchia C., Johnson C.D., Biankin A.V., et al. Pancreatic cancer. Nat. Rev. Dis. Prim. 2016;2:1–23. PubMed

Mahajan U.M., Alnatsha A., Li Q., Oehrle B., Weiss F.U., Sendler M., et al. Plasma metabolome profiling identifies metabolic subtypes of pancreatic ductal adenocarcinoma. Cells. 2021;10:1–16. PubMed PMC

Zhang T., van Die I., Tefsen B., van Vliet S.J., Laan L.C., Zhang J., et al. Differential O- and glycosphingolipid glycosylation in human pancreatic adenocarcinoma cells with opposite morphology and metastatic behavior. Front. Oncol. 2020;10:1–19. PubMed PMC

Shida K., Korekane H., Misonou Y., Noura S., Ohue M., Takahashi H., et al. Novel ganglioside found in adenocarcinoma cells of Lewis-negative patients. Glycobiology. 2010;20:1594–1606. PubMed

Mayerle J., Kalthoff H., Reszka R., Kamlage B., Peter E., Schniewind B., et al. Metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Gut. 2018;67:128–137. PubMed PMC

Furukawa K., Ohmi Y., Ohkawa Y., Bhuiyan R.H., Zhang P., Tajima O., et al. New era of research on cancer-associated glycosphingolipids. Cancer Sci. 2019;110:1544–1551. PubMed PMC

Root A., Allen P., Tempst P., Yu K. Protein biomarkers for early detection of pancreatic ductal adenocarcinoma: progress and challenges. Cancers (Basel) 2018;10:1–12. PubMed PMC

Becker A.E., Hernandez Y.G., Frucht H., Lucas A.L. Pancreatic ductal adenocarcinoma: risk factors, screening, and early detection. World J. Gastroenterol. 2014;20:11182–11198. PubMed PMC

Tang H., Partyka K., Hsueh P., Sinha J.Y., Kletter D., Zeh H., et al. Glycans related to the CA19-9 antigen are increased in distinct subsets of pancreatic cancers and improve diagnostic accuracy over CA19-9. Cell. Mol. Gastroenterol. Hepatol. 2016;2:210–221. PubMed PMC

Haab B.B., Huang Y., Balasenthil S., Partyka K., Tang H., Anderson M., et al. Definitive characterization of CA 19-9 in resectable pancreatic cancer using a reference set of serum and plasma specimens. PLoS One. 2015;10:1–18. PubMed PMC

Wolrab D., Jirásko R., Cífková E., Höring M., Mei D., Chocholoušková M., et al. Lipidomic profiling of human serum enables detection of pancreatic cancer. Nat. Commun. 2022;13:1–16. PubMed PMC

Schnaar R.L.T., Kinoshita T. Essentials of Glycobiology. 3rd Edition. Cold Spring Harbor Laboratory; NY: 2017. Glycosphingolipids; pp. 1–11.

Lingwood C.A. Glycosphingolipid functions. Cold Spring Harb. Perspect. Biol. 2011;3:1–26. PubMed PMC

Lu H., Zhang H., Xu S., Li L. Review of recent advances in lipid analysis of biological samples via ambient ionization mass spectrometry. Metabolites. 2021;11:781. PubMed PMC

Russo D., Capolupo L., Loomba J.S., Sticco L., D’Angelo G. Glycosphingolipid metabolism in cell fate specification. J. Cell Sci. 2018;131:jcs219204. PubMed

Skotland T., Kavaliauskiene S., Sandvig K. The role of lipid species in membranes and cancer-related changes. Cancer Metastasis Rev. 2020;39:343–360. PubMed PMC

Rybová J., Kuchař L., Hůlková H., Asfaw B., Dobrovolný R., Sikora J., et al. Specific storage of glycoconjugates with terminal α-galactosyl moieties in the exocrine pancreas of Fabry disease patients with blood group B. Glycobiology. 2018;28:382–391. PubMed

Groux-Degroote S., Delannoy P. Cancer-associated glycosphingolipids as tumor markers and targets for cancer immunotherapy. Int. J. Mol. Sci. 2021;22:6145. PubMed PMC

Sasaki N., Hirabayashi K., Michishita M., Takahashi K., Hasegawa F., Gomi F., et al. Ganglioside GM2, highly expressed in the MIA PaCa-2 pancreatic ductal adenocarcinoma cell line, is correlated with growth, invasion, and advanced stage. Sci. Rep. 2019;9:19369. PubMed PMC

Wolrab D., Jirásko R., Chocholoušková M., Peterka O., Holčapek M. Oncolipidomics: mass spectrometric quantitation of lipids in cancer research. Trends Anal. Chem. 2019;121

Jirásko R., Holčapek M., Khalikova M., Vrána D., Študent V., Prouzová Z., et al. MALDI orbitrap mass spectrometry profiling of dysregulated sulfoglycosphingolipids in renal cell carcinoma tissues. J. Am. Soc. Mass Spectrom. 2017;28:1562–1574. PubMed

Battula V.L., Shi Y., Evans K.W., Wang R.Y., Spaeth E.L., Jacamo R.O., et al. Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J. Clin. Invest. 2012;122:2066–2078. PubMed PMC

Cífková E., Lísa M., Hrstka R., Vrána D., Gatěk J., Melichar B., et al. Correlation of lipidomic composition of cell lines and tissues of breast cancer patients using hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry and multivariate data analysis. Rapid Commun. Mass Spectrom. 2017;31:253–263. PubMed

Liang Y.J., Ding Y., Levery S.B., Lobaton M., Handa K., Hakomori S.I. Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells. Proc. Natl. Acad. Sci. U. S. A. 2013;110:4968–4973. PubMed PMC

Albrecht S., Vainauskas S., Stöckmann H., McManus C., Taron C.H., Rudd P.M. Comprehensive profiling of glycosphingolipid glycans using a novel broad specificity endoglycoceramidase in a high-throughput workflow. Anal. Chem. 2016;88:4795–4802. PubMed

Alam S., Fedier A., Kohler R.S., Jacob F. Glucosylceramide synthase inhibitors differentially affect expression of glycosphingolipids. Glycobiology. 2015;25:351–356. PubMed

Cífková E., Holčapek M., Lísa M., Vrána D., Gatěk J., Melichar B. Determination of lipidomic differences between human breast cancer and surrounding normal tissues using HILIC-HPLC/ESI-MS and multivariate data analysis. Anal. Bioanal. Chem. 2015;407:991–1002. PubMed

Hájek R., Lísa M., Khalikova M., Jirásko R., Cífková E., Študent V., et al. HILIC/ESI-MS determination of gangliosides and other polar lipid classes in renal cell carcinoma and surrounding normal tissues. Anal. Bioanal. Chem. 2018;410:6585–6594. PubMed

Bien T., Perl M., MacHmüller A.C., Nitsche U., Conrad A., Johannes L., et al. MALDI-2 mass spectrometry and immunohistochemistry imaging of Gb3Cer, Gb4Cer, and further glycosphingolipids in human colorectal cancer tissue. Anal. Chem. 2020;92:7096–7105. PubMed

Säljö K., Thornell A., Jin C., Stålberg P., Norlén O., Teneberg S. Characterization of glycosphingolipids in the human parathyroid and thyroid glands. Int. J. Mol. Sci. 2021;22:7044. PubMed PMC

Santos L., Jin C., Gazárková T., Thornell A., Norlén O., Säljö K., et al. Characterization of glycosphingolipids from gastrointestinal stromal tumours. Sci. Rep. 2020;10:19371. PubMed PMC

Wolrab D., Jirásko R., Peterka O., Idkowiak J., Chocholoušková M., Vaňková Z., et al. Plasma lipidomic profiles of kidney, breast and prostate cancer patients differ from healthy controls. Sci. Rep. 2021;11:20322. PubMed PMC

Heywood W.E., Doykov I., Spiewak J., Hallqvist J., Mills K., Nowak A. Global glycosphingolipid analysis in urine and plasma of female Fabry disease patients. Biochim. Biophys. Acta - Mol. Basis Dis. 2019;1865:2726–2735. PubMed

Sarbu M., Fabris D., Vukelić Ž., Clemmer D.E., Zamfir A.D. Ion mobility mass spectrometry reveals rare sialylated glycosphingolipid structures in human cerebrospinal fluid. Molecules. 2022;27:743. PubMed PMC

Schweppe C.H., Hoffmann P., Nofer J.R., Pohlentz G., Mormann M., Karch H., et al. Neutral glycosphingolipids in human blood: a precise mass spectrometry analysis with special reference to lipoprotein-associated shiga toxin receptors. J. Lipid Res. 2010;51:2282–2294. PubMed PMC

Cadena A.P., Cushman T.R., Welsh J.W. Glycosylation and antitumor immunity. Int. Rev. Cell Mol. Biol. 2019;343:111–127. PubMed

Nardy A.F.F.R., Freire-de-Lima L., Freire-de-Lima C.G., Morrot A. The sweet side of immune evasion: role of glycans in the mechanisms of cancer progression. Front. Oncol. 2016;6:54. PubMed PMC

Ho W.L., Hsu W.M., Huang M.C., Kadomatsu K., Nakagawara A. Protein glycosylation in cancers and its potential therapeutic applications in neuroblastoma. J. Hematol. Oncol. 2016;9:100. PubMed PMC

Pietrobono S., Stecca B. Aberrant sialylation in cancer: biomarker and potential target for therapeutic intervention? Cancers (Basel) 2021;13:2014. PubMed PMC

Reis C.A., Osorio H., Silva L., Gomes C., David L. Alterations in glycosylation as biomarkers for cancer detection. J. Clin. Pathol. 2010;63:322–329. PubMed

Munkley J. The glycosylation landscape of pancreatic cancer (Review) Oncol. Lett. 2019;17:2569–2575. PubMed PMC

Schömel N., Geisslinger G., Wegner M.S. Influence of glycosphingolipids on cancer cell energy metabolism. Prog. Lipid Res. 2020;79 PubMed

Holst S., Belo A.I., Giovannetti E., Van Die I., Wuhrer M. Profiling of different pancreatic cancer cells used as models for metastatic behaviour shows large variation in their N-glycosylation. Sci. Rep. 2017;7:16623. PubMed PMC

Barrientos R.C., Zhang Q. Recent advances in the mass spectrometric analysis of glycosphingolipidome – a review. Anal. Chim. Acta. 2020;1132:134–155. PubMed PMC

Barone A., Benktander J., Teneberg S., Breimer M.E. Characterization of acid and non-acid glycosphingolipids of porcine heart valve cusps as potential immune targets in biological heart valve grafts. Xenotransplantation. 2014;21:510–522. PubMed

Folch J., Lees M., Sloane Stanley G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957;226:497–509. PubMed

Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. PubMed

Matyash V., Liebisch G., Kurzchalia T.V., Shevchenko A., Schwudke D. Lipid extraction by methyl-terf-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008;49:1137–1146. PubMed PMC

Ishibashi Y., Kobayashi U., Hijikata A., Sakaguchi K., Goda H.M., Tamura T., et al. Preparation and characterization of EGCase I, applicable to the comprehensive analysis of GSLs, using a rhodococcal expression system. J. Lipid Res. 2012;53:2242–2251. PubMed PMC

Burla B., Arita M., Arita M., Bendt A.K., Cazenave-Gassiot A., Dennis E.A., et al. MS-based lipidomics of human blood plasma: a community-initiated position paper to develop accepted guidelines. J. Lipid Res. 2018;59:2001–2017. PubMed PMC

Zhuo D., Li X., Guan F. Biological roles of aberrantly expressed glycosphingolipids and related enzymes in human cancer development and progression. Front. Physiol. 2018;9:466. PubMed PMC

Karlsson H., Halim A., Teneberg S. Differentiation of glycosphingolipid-derived glycan structural isomers by liquid chromatography/mass spectrometry. Glycobiology. 2010;20:1103–1116. PubMed

Chai W., Piskarev V., Lawson A.M. Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Anal. Chem. 2001;73:651–657. PubMed

Jin C., Teneberg S. Characterization of novel nonacid glycosphingolipids as biomarkers of human gastric adenocarcinoma. J. Biol. Chem. 2022;298 PubMed PMC

Larsen R.D., Rivera-Marrero C.A., Ernst L.K., Cummings R.D., Lowe J.B. Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal:β-D-Gal(1,4)-D-GlcNAc α(1,3)-galactosyltransferase cDNA. J. Biol. Chem. 1990;265:7055–7061. PubMed

Westman J.S., Benktander J., Storry J.R., Peyrard T., Hult A.K., Hellberg Å., et al. Identification of the molecular and genetic basis of PX2, a glycosphingolipid blood group antigen lacking on globoside-deficient erythrocytes. J. Biol. Chem. 2015;290:18505–18518. PubMed PMC

Ruhaak L.R., Deelder A.M., Wuhrer M. Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 2009;394:163–174. PubMed

Zaia J. Mass spectrometry of oligosaccharides. Mass Spectrom. Rev. 2004;23:161–227. PubMed

Liebisch G., Fahy E., Aoki J., Dennis E.A., Durand T., Ejsing C.S., et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020;61:1539–1555. PubMed PMC

Yuki D., Sugiura Y., Zaima N., Akatsu H., Hashizume Y., Yamamoto T., et al. Hydroxylated and non-hydroxylated sulfatide are distinctly distributed in the human cerebral cortex. Neuroscience. 2011;193:44–53. PubMed

Hsu F.F., Bohrer A., Turk J. Electrospray ionization tandem mass spectrometric analysis of sulfatide. Determination of fragmentation patterns and characterization of molecular species expressed in brain and in pancreatic islets. Biochim. Biophys. Acta - Lipids Lipid Metab. 1998;1392:202–216. PubMed

Hsu F.F., Turk J. Studies on sulfatides by quadrupole ion-trap mass spectrometry with electrospray ionization: structural characterization and the fragmentation processes that include an unusual internal galactose residue loss and the classical charge-remote fragmentation. J. Am. Soc. Mass Spectrom. 2004;15:536–546. PubMed

Chai W., Piskarev V.E., Mulloy B., Liu V., Evans P.G., Osborn H.M.I., et al. Analysis of chain and blood group type and branching pattern of sialylated oligosaccharides by negative ion electrospray tandem mass spectrometry. Anal. Chem. 2006;78:1581–1592. PubMed

Distler U., Souady J., Hülsewig M., Drmić-Hofman I., Haier J., Denz A., et al. Tumor-associated CD75s- and iso-CD75s-gangliosides are potential targets for adjuvant therapy in pancreatic cancer. Mol. Cancer Ther. 2008;7:2464–2475. PubMed

Chai W., Lawson A.M., Piskarev V. Branching pattern and sequence analysis of underivatized oligosaccharides by combined MS/MS of singly and doubly charged molecular ions in negative-ion electrospray mass spectrometry. J. Am. Soc. Mass. Spectrom. 2002;13:670–679. PubMed

Distler U., Hülsewig M., Souady J., Dreisewerd K., Haier J., Senninger N., et al. Matching IR-MALDI-o-TOF mass spectrometry with the TLC overlay binding assay and its clinical application for tracing tumor-associated glycosphingolipids in hepatocellular and pancreatic cancer. Anal. Chem. 2008;80:1835–1846. PubMed

Manimala J.C., Roach T.A., Li Z., Gildersleeve J.C. High-throughput carbohydrate microarray analysis of 24 lectins. Angew. Chem. - Int. Ed. 2006;45:3607–3610. PubMed

Manimala J.C., Roach T.A., Li Z., Gildersleeve J.C. High-throughput carbohydrate microarray profiling of 27 antibodies demonstrates widespread specificity problems. Glycobiology. 2007 doi: 10.1093/glycob/cwm047. PubMed DOI

Barone A., Benktander J., Ångström J., Aspegren A., Björquist P., Teneberg S., et al. Structural complexity of non-acid glycosphingolipids in human embryonic stem cells grown under feeder-free conditions. J. Biol. Chem. 2013;288:10035–10050. PubMed PMC

Teneberg S., Angstrom J., Jovall P.A., Karlsson K.A. Characterization of binding of Galβ4GlcNAc-specific lectins from Erythrina cristagalli and Erythrina corallodendron to glycosphingolipids. Detection, isolation, and characterization of a novel glycosphingolipid of bovine buttermilk. J. Biol. Chem. 1994;269:8554–8563. PubMed

Roche N., Ilver D., Ångström J., Barone S., Telford J.L., Teneberg S. Human gastric glycosphingolipids recognized by Helicobacter pylori vacuolating cytotoxin VacA. Microbes Infect. 2007;9:605–614. PubMed

Ferreira I.G., Carrascal M., Mineiro A.G., Bugalho A., Borralho P., Silva Z., et al. Carcinoembryonic antigen is a sialyl Lewis x/a carrier and an E-selectin ligand in non-small cell lung cancer. Int. J. Oncol. 2019;55:1033–1048. PubMed PMC

Yu C.J., Shih J.Y., Lee Y.C., Shun C.T., Yuan A., Yang P.C. Sialyl Lewis antigens: association with MUC5AC protein and correlation with post-operative recurrence of non-small cell lung cancer. Lung Cancer. 2005;47:59–67. PubMed

Fujitani N., Takegawa Y., Ishibashi Y., Araki K., Furukawa J.I., Mitsutake S., et al. Qualitative and quantitative cellular glycomics of glycosphingolipids based on rhodococcal endoglycosylceramidase-assisted glycan cleavage, glycoblotting-assisted sample preparation, and matrix-assisted laser desorption ionization tandem time-of-flight ma. J. Biol. Chem. 2011;286:41669–41679. PubMed PMC

Li Y.T., Chou C.W., Li S.C., Kobayashi U., Ishibashi Y.H., Ito M. Preparation of homogenous oligosaccharide chains from glycosphingolipids. Glycoconj. J. 2009;26:929–933. PubMed

Zhu T., Xu L., Xu X., Wang Z., Zhu J., Xie Q., et al. Analysis of breast cancer-associated glycosphingolipids using electrospray ionization-linear ion trap quadrupole mass spectrometry. Carbohydr. Res. 2015;402:189–199. PubMed

Zhu J., Wang Y., Yu Y., Wang Z., Zhu T., Xu X., et al. Aberrant fucosylation of glycosphingolipids in human hepatocellular carcinoma tissues. Liver Int. 2014;34:147–160. PubMed

Balmaña M., Giménez E., Puerta A., Llop E., Figueras J., Fort E., et al. Increased α1-3 fucosylation of α-1-acid glycoprotein (AGP) in pancreatic cancer. J. Proteomics. 2016;132:144–154. PubMed

Zhang J., Zhang Z., Holst S., Blöchl C., Madunic K., Wuhrer M., et al. Transforming growth factor-β challenge alters the N-, O-, and glycosphingolipid glycomes in PaTu-S pancreatic adenocarcinoma cells. J. Biol. Chem. 2022;298 PubMed PMC

Morishita K., Ito N., Koda S., Maeda M., Nakayama K., Yoshida K., et al. Haptoglobin phenotype is a critical factor in the use of fucosylated haptoglobin for pancreatic cancer diagnosis. Clin. Chim. Acta. 2018;487:84–89. PubMed

Miyoshi E., Moriwaki K., Terao N., Tan C.C., Terao M., Nakagawa T., et al. Fucosylation is a promising target for cancer diagnosis and therapy. Biomolecules. 2012;2:34–45. PubMed PMC

Mohamed Abd-El-Halim Y., El Kaoutari A., Silvy F., Rubis M., Bigonnet M., Roques J., et al. A glycosyltransferase gene signature to detect pancreatic ductal adenocarcinoma patients with poor prognosis. EBioMedicine. 2021;71 PubMed PMC

Mollicone R., Cailleau A., Oriol R. Molecular genetics of H, Se, Lewis and other fucosyltransferase genes. Transfus. Clin. Biol. 1995;2:235–242. PubMed

Wolpin B.M., Chan A.T., Hartge P., Chanock S.J., Kraft P., Hunter D.J., et al. ABO blood group and the risk of pancreatic cancer. J. Natl. Cancer Inst. 2009;101:424–431. PubMed PMC

Rahbari N.N., Bork U., Hinz U., Leo A., Kirchberg J., Koch M., et al. AB0 blood group and prognosis in patients with pancreatic cancer. BMC Cancer. 2012;12:319. PubMed PMC

Antwi S.O., Bamlet W.R., Pedersen K.S., Chaffee K.G., Risch H.A., Shivappa N., et al. Pancreatic cancer risk is modulated by inflammatory potential of diet and ABO genotype: a consortia-based evaluation and replication study. Carcinogenesis. 2018;39:1056–1067. PubMed PMC

Annese V., Minervini M., Gabbrielli A., Gambassi G., Manna R. ABO blood groups and cancer of the stomach. Int. J. Pancreatol. 1990;6:81–88. PubMed

Breimer M.E. Tissue specificity of glycosphingolipids as expressed in pancreas and small intestine of blood group A and B human individuals. Arch. Biochem. Biophys. 1984;228:71–85. PubMed

Karlsson K.-A. Preparation of total nonacid glycolipids for overlay analysis of receptors for bacteria and viruses and for other studies. Met. Enzymol. 1987;138:212–220. PubMed

Samuelsson B.E., Pimlott W., Karlsson K.-A. Mass spectrometry of mixture of intact glycosphingolipids. Met. Enzymol. 1990;193:623–646. PubMed

Koerner T.A.W., Prestegard J.H., Demou P.C., Yu R.K. High-resolution proton NMR studies of gangliosides. 1. Use of homonuclear two-dimensional spin-echo J-correlated spectroscopy for determination of residue composition and anomeric configurations. Biochemistry. 1983;22:2676–2687. PubMed

Svennerholm L. Quantitive estimation of sialic acids. Biochim. Biophys. Acta. 1957;24:604–611. PubMed

Svennerholm L., Fredman P. A procedure for the quantitative isolation of brain gangliosides. Biochim. Biophys. Acta (Bba)/lipids Lipid Metab. 1980;617:97–109. PubMed

Barone A., Benktander J., Whiddon C., Jin C., Galli C., Teneberg S., et al. Glycosphingolipids of porcine, bovine, and equine pericardia as potential immune targets in bioprosthetic heart valve grafts. Xenotransplantation. 2018;25:e12406. PubMed

Svennerholm L., Rynmark B.-M., Vilbergsson G., Fredman P., Gottfries J., Månsson J.-E., et al. Gangliosides in human fetal brain. J. Neurochem. 1991;56:1763–1768. PubMed

Ceroni A., Maass K., Geyer H., Geyer R., Dell A., Haslam S.M. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J. Proteome Res. 2008;7:1650–1659. PubMed

Bauer S. Mass spectrometry for characterizing plant cell wall polysaccharides. Front. Plant Sci. 2012;3 doi: 10.3389/fpls.2012.00045. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace