Unraveling the complexity of glycosphingolipidome: the key role of mass spectrometry in the structural analysis of glycosphingolipids
Language English Country Germany Media print-electronic
Document type Journal Article, Review
Grant support
JA344644
Ministry of Education, Youth and Sports, Czech Republic
No. 21-20238S
Grantová Agentura České Republiky
PubMed
39138658
PubMed Central
PMC11427620
DOI
10.1007/s00216-024-05475-7
PII: 10.1007/s00216-024-05475-7
Knihovny.cz E-resources
- Keywords
- Derivatization, Fragmentation, Glycosphingolipids, Liquid chromatography, Mass spectrometry, Structural elucidation,
- MeSH
- Glycosphingolipids * chemistry analysis MeSH
- Mass Spectrometry * methods MeSH
- Humans MeSH
- Tandem Mass Spectrometry methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Glycosphingolipids * MeSH
Glycosphingolipids (GSL) are a highly heterogeneous class of lipids representing the majority of the sphingolipid category. GSL are fundamental constituents of cellular membranes that have key roles in various biological processes, such as cellular signaling, recognition, and adhesion. Understanding the structural complexity of GSL is pivotal for unraveling their functional significance in a biological context, specifically their crucial role in the pathophysiology of various diseases. Mass spectrometry (MS) has emerged as a versatile and indispensable tool for the structural elucidation of GSL enabling a deeper understanding of their complex molecular structures and their key roles in cellular dynamics and patholophysiology. Here, we provide a thorough overview of MS techniques tailored for the analysis of GSL, emphasizing their utility in probing GSL intricate structures to advance our understanding of the functional relevance of GSL in health and disease. The application of tandem MS using diverse fragmentation techniques, including novel ion activation methodologies, in studying glycan sequences, linkage positions, and fatty acid composition is extensively discussed. Finally, we address current challenges, such as the detection of low-abundance species and the interpretation of complex spectra, and offer insights into potential solutions and future directions by improving MS instrumentation for enhanced sensitivity and resolution, developing novel ionization techniques, or integrating MS with other analytical approaches for comprehensive GSL characterization.
See more in PubMed
Merrill AH, Wang MD, Park M, Sullards MC. (Glyco)sphingolipidology: an amazing challenge and opportunity for systems biology. Trends Biochem Sci. 2007;32:457–68. 10.1016/j.tibs.2007.09.004. PubMed
Zhang X, Kiechle FL. Review: Glycosphingolipids in Health and Disease. Ann Clin Lab Sci. 2004;34:3–13. PubMed
Senn HJ, Orth M, Fitzke E, Wieland H, Gerok W. Gangliosides in normal human serum concentration, pattern and transport by lipoproteins. Eur J Biochem. 1989;181(3):657–62. 10.1111/j.1432-1033.1989.tb14773.x. PubMed
Han X. Lipidomics: Comprehensive mass spectrometry of lipids, 1st ed. New Jersey, USA: John Wiley & Sons; 2016.
Holčapek M, Liebisch G, Ekroos K. Lipidomic Analysis. Anal Chem. 2018;90:4249–57. 10.1021/acs.analchem.7b05395. PubMed
Wojcik R, Webb IK, Deng L, Garimella SVB, Prost SA, Ibrahim YM, Baker ES, Smith RD. Lipid and glycolipid isomer analyses using ultra-high resolution ion mobility spectrometry separations. Int J Mol Sci. 2017;18:1–12. 10.3390/ijms18010183. PubMed PMC
Merrill AH, Sullards MC. Opinion article on lipidomics: Inherent challenges of lipidomic analysis of sphingolipids. Biochim Biophys Acta - Mol Cell Biol Lipids. 2017;1862:774–6. 10.1016/j.bbalip.2017.01.009. PubMed PMC
Reza S, Ugorski M, Suchański J. Glucosylceramide and galactosylceramide, small glycosphingolipids with significant impact on health and disease. Glycobiology. 2021;31:1416–34. 10.1093/glycob/cwab046. PubMed PMC
Willison HJ, Yuki N. Peripheral neuropathies and anti-glycolipid antibodies. Brain. 2002;125:2591–625. 10.1093/brain/awf272. PubMed
Kain L, Webb B, Anderson BL, Deng S, Holt M, Constanzo A, Zhao M, Self K, Teyton A, Everett C, et al. The Identification of the Endogenous Ligands of Natural Killer T Cells Reveals the Presence of Mammalian α-Linked Glycosylceramides. Immunity. 2014;41:543–54. 10.1016/j.immuni.2014.08.017. PubMed PMC
Von Gerichten J, Schlosser K, Lamprecht D, Morace I, Eckhardt M, Wachten D, Jennemann R, Gröne HJ, Mack M, Sandhoff R. Diastereomer-specific quantification of bioactive hexosylceramides from bacteria and mammals. J Lipid Res. 2017;58:1247–58. 10.1194/jlr.D076190. PubMed PMC
Duan J, Merrill AH. 1-deoxysphingolipids encountered exogenously and made de novo: Dangerous mysteries inside an enigma. J Biol Chem. 2015;290:15380–9. 10.1074/jbc.R115.658823. PubMed PMC
Shayman JA, Abe A, Hiraoka M. A turn in the road: How studies on the pharmacology of glucosylceramide synthase inhibitors led to the identification of a lysosomal phospholipase A2 with ceramide transacylase activity. Glycoconj J. 2003;20:25–32. 10.1023/B:GLYC.0000016739.32089.55. PubMed
Sandhoff R. Very long chain sphingolipids: Tissue expression, function and synthesis. FEBS Lett. 2010;584:1907–13. 10.1016/j.febslet.2009.12.032. PubMed
Damen CWN, Isaac G, Langridge J, Hankemeier T, Vreeken RJ. Enhanced lipid isomer separation in human plasma using reversed-phase UPLC with ion-mobility/high-resolution MS detection. J Lipid Res. 2014;55:1772–83. 10.1194/jlr.D047795. PubMed PMC
Hu C, Wang C, He L, Han X. Novel strategies for enhancing shotgun lipidomics for comprehensive analysis of cellular lipidomes. TrAC - Trends Anal Chem 2019;120, 10.1016/j.trac.2018.11.028. PubMed PMC
Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-terf-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49:1137–46. 10.1194/jlr.D700041-JLR200. PubMed PMC
Ståhlman M, Ejsing CS, Tarasov K, Perman J, Borén J, Ekroos K. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877:2664–72. 10.1016/j.jchromb.2009.02.037. PubMed
Han X. Multi-dimensional mass spectrometry-based shotgun lipidomics and the altered lipids at the mild cognitive impairment stage of Alzheimer’s disease. Biochim Biophys Acta - Mol Cell Biol Lipids. 2010;1801:774–83. 10.1016/j.bbalip.2010.01.010. PubMed PMC
Yang K, Zhao Z, Gross RW, Han X. Systematic analysis of choline-containing phospholipids using multi-dimensional mass spectrometry-based shotgun lipidomics. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877:2924–36. 10.1016/j.jchromb.2009.01.016. PubMed PMC
Manicke NE, Wiseman JM, Ifa DR, Cooks RG. Desorption Electrospray Ionization (DESI) Mass Spectrometry and Tandem Mass Spectrometry (MS/MS) of Phospholipids and Sphingolipids: Ionization, Adduct Formation, and Fragmentation. J Am Soc Mass Spectrom. 2008;19:531–43. 10.1016/j.jasms.2007.12.003. PubMed
Nemes P, Woods AS, Vertes A. Simultaneous imaging of small metabolites and lipids in rat brain tissues at atmospheric pressure by laser ablation electrospray ionization mass spectrometry. Anal Chem. 2010;82:982–8. 10.1021/ac902245p. PubMed PMC
Muck A, Stelzner T, Hübner U, Christiansen S, Svatoš A. Lithographically patterned silicon nanowire arrays for matrix free LDI-TOF/MS analysis of lipids. Lab Chip. 2010;10:320–5. 10.1039/b913212k. PubMed
Han X, Yang K, Gross RW. Microfluidics-based electrospray ionization enhances the intrasource separation of lipid classes and extends identification of individual molecular species through multi-dimensional mass spectrometry: development of an automated high-throughput platform f. Rapid Commun Mass Spectrom. 2008;22:2115–24. 10.1002/rcm.3595Microfluidics-based. PubMed PMC
Hsu FF. Mass spectrometry-based shotgun lipidomics – a critical review from the technical point of view. Anal Bioanal Chem. 2018;410:6387–409. 10.1007/s00216-018-1252-y. PubMed PMC
Wang J, Han X. Analytical challenges of shotgun lipidomics at different resolution of measurements. TrAC - Trends Anal Chem. 2019;121:115697. 10.1016/j.trac.2019.115697. PubMed PMC
Folch J, Lees M, Sloane Stanley GHA. simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509. 10.1016/s0021-9258(18)64849-5. PubMed
Bligh EG, Dyer WJ. A Rapid Method of Total Lipid Extraction and Purification. Can J Biochem Physiol. 1959;37:911–7. 10.1139/o59-099. PubMed
Barrientos RC, Zhang Q. Recent advances in the mass spectrometric analysis of glycosphingolipidome – A review. Anal Chim Acta. 2020;1132:134–55. 10.1016/j.aca.2020.05.051. PubMed PMC
Saini RK, Prasad P, Shang X, Keum YS. Advances in lipid extraction methods—a review. Int J Mol Sci. 2021;22:1–19. 10.3390/ijms222413643. PubMed PMC
Smith DF, Prieto PA. Special Considerations for Glycolipids and Their Purification. Curr Protoc Mol Biol. 1993;22:1–13. 10.1002/0471142727.mb1703s22. PubMed
Löfgren L, Ståhlman M, Forsberg GB, Saarinen S, Nilsson R, Hansson GI. The BUME method: A novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J Lipid Res. 2012;53:1690–700. 10.1194/jlr.D023036. PubMed PMC
Löfgren L, Forsberg GB. Ståhlman, M. The BUME method: A new rapid and simple chloroform-free method for total lipid extraction of animal tissue. Sci Rep 2016;6, 10.1038/srep27688. PubMed PMC
Alshehry ZH, Barlow CK, Weir JM, Zhou Y, McConville MJ, Meikle PJ. An efficient single phase method for the extraction of plasma lipids. Metabolites. 2015;5:389–403. 10.3390/metabo5020389. PubMed PMC
Höring M, Stieglmeier C, Schnabel K, Hallmark T, Ekroos K, Burkhardt R, Liebisch G. Benchmarking One-Phase Lipid Extractions for Plasma Lipidomics. Anal Chem. 2022;94:12292–6. 10.1021/acs.analchem.2c02117. PubMed PMC
Jurowski K, Kochan K, Walczak J, Barańska M, Piekoszewski W, Buszewski B. Comprehensive review of trends and analytical strategies applied for biological samples preparation and storage in modern medical lipidomics: State of the art. TrAC - Trends Anal Chem. 2017;86:276–89. 10.1016/j.trac.2016.10.014.
Wong MWK, Braidy N, Pickford R, Sachdev PS, Poljak A. Comparison of single phase and biphasic extraction protocols for lipidomic studies using human plasma. Front Neurol. 2019;10:1–11. 10.3389/fneur.2019.00879. PubMed PMC
Sarafian MH, Gaudin M, Lewis MR, Martin FP, Holmes E, Nicholson JK, Dumas ME. Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry. Anal Chem. 2014;86:5766–74. 10.1021/ac500317c. PubMed
Wu Z, Bagarolo GI, Thoröe-Boveleth S, Jankowski J. “Lipidomics”: Mass spectrometric and chemometric analyses of lipids. Adv Drug Deliv Rev. 2020;159:294–307. 10.1016/j.addr.2020.06.009. PubMed
Karlsson K-A. Preparation of Total Nonacid Glycolipids for Overlay Analysis of Receptors for Bacteria and Viruses and for Other Studies. Methods Enzymol. 1987;138:212–20. 10.1016/0076-6879(87)38018-8. PubMed
Song Z, Duan C, Shi M, Li S, Guan Y. One-step preparation of ZrO2/SiO2 microspheres and modification with D-fructose 1,6-bisphosphate as stationary phase for hydrophilic interaction chromatography. J Chromatogr A. 2017;1522:30–7. 10.1016/j.chroma.2017.09.046. PubMed
Ge P, Luo Y, Chen H, Liu J, Guo H, Xu C, Qu J, Zhang G, Chen H. Application of Mass Spectrometry in Pancreatic Cancer Translational Research. Front Oncol. 2021;11:1–16. 10.3389/fonc.2021.667427. PubMed PMC
Teo CC, Chong WPK, Tan E, Basri NB, Low ZJ, Ho YS. Advances in sample preparation and analytical techniques for lipidomics study of clinical samples. TrAC - Trends Anal Chem. 2015;66:1–18. 10.1016/j.trac.2014.10.010.
Li M, Zhou Z, Nie H, Bai Y, Liu H. Recent advances of chromatography and mass spectrometry in lipidomics. Anal Bioanal Chem. 2011;399:243–9. 10.1007/s00216-010-4327-y. PubMed
Torretta E, Fania C, Vasso M, Gelfi C. HPTLC-MALDI MS for (glyco)sphingolipid multiplexing in tissues and blood: A promising strategy for biomarker discovery and clinical applications. Electrophoresis. 2016;37:2036–49. 10.1002/elps.201600094. PubMed
Furukawa JI, Sakai S, Yokota I, Okada K, Hanamatsu H, Kobayashi T, Yoshida Y, Higashino K, Tamura T, Igarashi Y, et al. Quantitative GSL-glycome analysis of human whole serum based on an EGCase digestion and glycoblotting method. J Lipid Res. 2015;56:2399–407. 10.1194/jlr.D062083. PubMed PMC
Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev. 2013;113:2309–42. 10.1021/cr3004295. PubMed PMC
Ellis SR, Paine MRL, Eijkel GB, Pauling JK, Husen P, Jervelund MW, Hermansson M, Ejsing CS, Heeren RMA. Automated, parallel mass spectrometry imaging and structural identification of lipids. Nat Methods. 2018;15:515–8. 10.1038/s41592-018-0010-6. PubMed
Jirásko R, Holčapek M, Khalikova M, Vrána D, Študent V, Prouzová Z, Melichar B. MALDI Orbitrap Mass Spectrometry Profiling of Dysregulated Sulfoglycosphingolipids in Renal Cell Carcinoma Tissues. J Am Soc Mass Spectrom. 2017;28:1562–74. 10.1007/s13361-017-1644-9. PubMed
Harvey DJ. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Carbohydrates. Mass Spectrom Rev. 1999;18:349–451. 10.1002/(sici)1098-2787(1999)18:6%3c349::aid-mas1%3e3.0.co;2-h. PubMed
Leopold J, Popkova Y, Engel KM, Schiller J. Recent developments of useful MALDI matrices for the mass spectrometric characterization of lipids. Biomolecules. 2018;8:173. 10.3390/biom8040173. PubMed PMC
Camunas-Alberca SM, Moran-Garrido M, Sáiz J, Gil-de-la-Fuente A, Barbas C, Gradillas A. Integrating the potential of ion mobility spectrometry-mass spectrometry in the separation and structural characterisation of lipid isomers. Front Mol Biosci. 2023;10:1–21. 10.3389/fmolb.2023.1112521. PubMed PMC
May JC, Knochenmuss R, Fjeldsted JC, McLean JA. Resolution of Isomeric Mixtures in Ion Mobility Using a Combined Demultiplexing and Peak Deconvolution Technique. Anal Chem. 2020;92:9482–92. 10.1021/acs.analchem.9b05718. PubMed
Djambazova KV, Dufresne M, Migas LG, Kruse ARS, Van de Plas R, Caprioli RM, Spraggins JM. MALDI TIMS IMS of Disialoganglioside Isomers─GD1a and GD1b in Murine Brain Tissue. Anal Chem. 2023;95:1176–83. 10.1021/acs.analchem.2c03939. PubMed
Xu H, Boucher FR, Nguyen TT, Taylor GP, Tomlinson JJ, Ortega RA, Simons B, Schlossmacher MG, Saunders-Pullman R, Shaw W, et al. DMS as an orthogonal separation to LC/ESI/MS/MS for quantifying isomeric cerebrosides in plasma and cerebrospinal fluid. J Lipid Res. 2019;60:200–11. 10.1194/jlr.D089797. PubMed PMC
Dodds JN, Baker ES. Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead. J Am Soc Mass Spectrom. 2019;30:2185–95. 10.1007/s13361-019-02288-2. PubMed PMC
Domon B, Costello CE. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J. 1988;5:397–409. 10.1007/BF01049915.
Ann Q, Adams J. Structure determination of ceramides and neutral glycosphingolipids by collisional activation of [M + Li]+ ions. J Am Soc Mass Spectrom. 1992;3:260–3. 10.1016/1044-0305(92)87010-V. PubMed
Zaia J. Mass spectrometry of oligosaccharides. Mass Spectrom Rev. 2004;23:161–227. 10.1002/mas.10073. PubMed
Guo Z. The structural diversity of natural glycosphingolipids (GSLs). J Carbohydr Chem. 2022;41:63–154. PubMed PMC
Bayat P, Lesage D, Cole RB. Tutorial: Ion Activation in Tandem Mass Spectrometry Using Ultra-High Resolution Instrumentation. Mass Spectrom Rev. 2020;39:680–702. 10.1002/mas.21623. PubMed
Hořejší K, Jirásko R, Chocholoušková M, Wolrab D, Kahoun D, Holčapek M. Comprehensive identification of glycosphingolipids in human plasma using hydrophilic interaction liquid chromatography—electrospray ionization mass spectrometry. Metabolites. 2021;11:1–24. 10.3390/metabo11030140. PubMed PMC
Schweppe CH, Hoffmann P, Nofer JR, Pohlentz G, Mormann M, Karch H, Friedrich AW, Müthing J. Neutral glycosphingolipids in human blood: A precise mass spectrometry analysis with special reference to lipoprotein-associated Shiga toxin receptors. J Lipid Res. 2010;51:2282–94. 10.1194/jlr.M006759. PubMed PMC
Karlsson H, Halim A, Teneberg S. Differentiation of glycosphingolipid-derived glycan structural isomers by liquid chromatography/mass spectrometry. Glycobiology. 2010;20:1103–16. 10.1093/glycob/cwq070. PubMed
Li Y, Teneberg S, Thapa P, Bendelac A, Levery SB, Zhou D. Sensitive detection of isoglobo and globo series tetraglycosylceramides in human thymus by ion trap mass spectrometry. Glycobiology. 2008;18:158–65. 10.1093/glycob/cwm129. PubMed
O’Brien JP, Brodbelt JS. Structural characterization of gangliosides and glycolipids via ultraviolet photodissociation mass spectrometry. Anal Chem. 2013;85:10399–407. 10.1021/ac402379y. PubMed PMC
Kirschbaum C, Pagel K. Lipid Analysis by Mass Spectrometry coupled with Laser Light. Anal Sens. 2022;3(6):202200103. 10.1002/anse.202200103.
Ryan E, Nguyen CQN, Shiea C, Reid GE. Detailed Structural Characterization of Sphingolipids via 193 nm Ultraviolet Photodissociation and Ultra High Resolution Tandem Mass Spectrometry. J Am Soc Mass Spectrom. 2017;28:1406–19. 10.1007/s13361-017-1668-1. PubMed
Zhang W, Jian R, Zhao J, Liu Y, Xia Y. Deep-lipidotyping by mass spectrometry: recent technical advances and applications. J Lipid Res. 2022;63:100219. 10.1016/j.jlr.2022.100219. PubMed PMC
Pham HT, Julian RR. Characterization of glycosphingolipid epimers by radical-directed dissociation mass spectrometry. Analyst. 2016;141:1273–8. 10.1039/c5an02383a. PubMed
Kailemia MJ, Ruhaak LR, Lebrilla CB, Amster IJ. Oligosaccharide Analysis By Mass Spectrometry: A Review Of Recent Developments. Anal Chem. 2014;86:196–212. 10.1021/ac403969n. PubMed PMC
Hunnam V, Harvey DJ, Priestman DA, Bateman RH, Bordoli RS, Tyldesley R. Ionization and fragmentation of neutral and acidic glycosphingolipids with a Q-TOF mass spectrometer fitted with a MALDI ion source. J Am Soc Mass Spectrom. 2001;12:1220–5. 10.1016/S1044-0305(01)00309-9. PubMed
Chai W, Piskarev V, Lawson AM. Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Anal Chem. 2001;73:651–7. 10.1021/ac0010126. PubMed
Chai W, Lawson AM, Piskarev V. Branching Pattern and Sequence Analysis of Underivatized Oligosaccharides by Combined MS/MS of Singly and Doubly Charged Molecular Ions in Negative-Ion Electrospray Mass Spectrometry. J Am Soc Mass Spectrom. 2002;13:670–9. PubMed
Zhang H, Zhang S, Tao G, Zhang Y, Mulloy B, Zhan X, Chai W. Typing of blood-group antigens on neutral oligosaccharides by negative-ion electrospray ionization tandem mass spectrometry. Anal Chem. 2013;85:5940–9. 10.1021/ac400700e. PubMed PMC
Hořejší K, Jin C, Vaňková Z, Jirásko R, Strouhal O, Melichar B, Teneberg S, Holčapek M. Comprehensive characterization of complex glycosphingolipids in human pancreatic cancer tissues. J Biol Chem. 2023;299:1–22. 10.1016/j.jbc.2023.102923. PubMed PMC
Hsu FF, Bohrer A, Turk J. Electrospray ionization tandem mass spectrometric analysis of sulfatide. Determination of fragmentation patterns and characterization of molecular species expressed in brain and in pancreatic islets. Biochim Biophys Acta - Lipids Lipid Metab. 1998;1392:202–16. 10.1016/S0005-2760(98)00034-4. PubMed
Yuki D, Sugiura Y, Zaima N, Akatsu H, Hashizume Y, Yamamoto T, Fujiwara M, Sugiyama K, Setou M. Hydroxylated and non-hydroxylated sulfatide are distinctly distributed in the human cerebral cortex. Neuroscience. 2011;193:44–53. 10.1016/j.neuroscience.2011.07.045. PubMed
Hsu FF, Turk J. Studies on sulfatides by quadrupole ion-trap mass spectrometry with electrospray ionization: Structural characterization and the fragmentation processes that include an unusual internal galactose residue loss and the classical charge-remote fragmentation. J Am Soc Mass Spectrom. 2004;15:536–46. 10.1016/j.jasms.2003.12.007. PubMed
Hájek R, Jirásko R, Lísa M, Cífková E, Holčapek M. Hydrophilic Interaction Liquid Chromatography-Mass Spectrometry Characterization of Gangliosides in Biological Samples. Anal Chem. 2017;89:12425–32. 10.1021/acs.analchem.7b03523. PubMed
Chai W, Piskarev VE, Mulloy B, Liu V, Evans PG, Osborn HMI, Lawson AM. Analysis of chain and blood group type and branching pattern of sialylated oligosaccharides by negative ion electrospray tandem mass spectrometry. Anal Chem. 2006;78:1581–92. 10.1021/ac051606e. PubMed
Lu H, Zhang H, Xu S, Li L. Review of recent advances in lipid analysis of biological samples via ambient ionization mass spectrometry. Metabolites. 2021;11:781. 10.3390/metabo11110781. PubMed PMC
Zhao XE, Zhu S, Liu H. Recent progresses of derivatization approaches in the targeted lipidomics analysis by mass spectrometry. J Sep Sci. 2020;43:1838–46. 10.1002/jssc.201901346. PubMed
Ma X, Xia Y. Pinpointing double bonds in lipids by paternò-büchi reactions and mass spectrometry. Angew Chemie - Int Ed. 2014;53:2592–6. 10.1002/anie.201310699. PubMed
Xia F, Wan JB. Chemical derivatization strategy for mass spectrometry-based lipidomics. Mass Spectrom Rev. 2023;42:432–52. 10.1002/mas.21729. PubMed
Ma X, Chong L, Tian R, Shi R, Hu TY, Ouyang Z, Xia Y. Identification and quantitation of lipid C=C location isomers: A shotgun lipidomics approach enabled by photochemical reaction. Proc Natl Acad Sci U S A. 2016;113:2573–8. 10.1073/pnas.1523356113. PubMed PMC
Zhang W, Zhang D, Chen Q, Wu J, Ouyang Z, Xia Y. Online photochemical derivatization enables comprehensive mass spectrometric analysis of unsaturated phospholipid isomers. Nat Commun. 2019;10:1–9. 10.1038/s41467-018-07963-8. PubMed PMC
Bednařík A, Bölsker S, Soltwisch J, Dreisewerd K. An On-Tissue Paternò-Büchi Reaction for Localization of Carbon-Carbon Double Bonds in Phospholipids and Glycolipids by Matrix-Assisted Laser-Desorption–Ionization Mass-Spectrometry Imaging. Angew Chemie - Int Ed. 2018;57:12092–6. 10.1002/anie.201806635. PubMed
Thomas MC, Mitchell TW, Harman DG, Deeley JM, Nealon JR, Blanksby SJ. Ozone-induced dissociation: Elucidation of double bond position within mass-selected lipid ions. Anal Chem. 2008;80:303–11. 10.1021/ac7017684. PubMed
Brown SHJ, Mitchell TW, Blanksby SJ. Analysis of unsaturated lipids by ozone-induced dissociation. Biochim Biophys Acta - Mol Cell Biol Lipids. 2011;1811:807–17. 10.1016/j.bbalip.2011.04.015. PubMed
Poad BLJ, Green MR, Kirk JM, Tomczyk N, Mitchell TW, Blanksby SJ. High-Pressure Ozone-Induced Dissociation for Lipid Structure Elucidation on Fast Chromatographic Timescales. Anal Chem. 2017;89:4223–9. 10.1021/acs.analchem.7b00268. PubMed
Poad BLJ, Zheng X, Mitchell TW, Smith RD, Baker ES, Blanksby SJ. Online Ozonolysis Combined with Ion Mobility-Mass Spectrometry Provides a New Platform for Lipid Isomer Analyses. Anal Chem. 2018;90:1292–300. 10.1021/acs.analchem.7b04091. PubMed PMC
Barrientos RC, Vu N, Zhang Q. Structural Analysis of Unsaturated Glycosphingolipids Using Shotgun Ozone-Induced Dissociation Mass Spectrometry. J Am Soc Mass Spectrom. 2017;28:2330–43. 10.1007/s13361-017-1772-2. PubMed PMC
Barrientos RC, Zhang Q. Fragmentation Behavior and Gas-Phase Structures of Cationized Glycosphingolipids in Ozone-Induced Dissociation Mass Spectrometry. J Am Soc Mass Spectrom. 2019;30:1609–20. 10.1007/s13361-019-02267-7. PubMed PMC
Kuo TH, Chung HH, Chang HY, Lin CW, Wang MY, Shen TL, Hsu CC. Deep Lipidomics and Molecular Imaging of Unsaturated Lipid Isomers: A Universal Strategy Initiated by mCPBA Epoxidation. Anal Chem. 2019;91:11905–15. 10.1021/acs.analchem.9b02667. PubMed
Zhang H, Xu M, Shi X, Liu Y, Li Z, Jagodinsky JC, Ma M, Welham NV, Morris ZS, Li L. Quantification and molecular imaging of fatty acid isomers from complex biological samples by mass spectrometry. Chem Sci. 2021;12:8115–22. 10.1039/d1sc01614h. PubMed PMC
Feng Y, Chen B, Yu Q, Li L. Identification of Double Bond Position Isomers in Unsaturated Lipids by m-CPBA Epoxidation and Mass Spectrometry Fragmentation. Anal Chem. 2019;91:1791–5. 10.1021/acs.analchem.8b04905. PubMed PMC
Zhang J, Zhang Z, Jiang T, Zhang Z, Zhang W, Xu W. Rapidly identifying and quantifying of unsaturated lipids with carbon-carbon double bond isomers by photoepoxidation. Talanta. 2023;260:124575. 10.1016/j.talanta.2023.124575. PubMed
Tang S, Cheng H, Yan X. On-Demand Electrochemical Epoxidation in Nano-Electrospray Ionization Mass Spectrometry to Locate Carbon-Carbon Double Bonds. Angew Chemie - Int Ed. 2020;59:209–14. 10.1002/anie.201911070. PubMed
Luo K, Chen H, Zare RN. Location of carbon-carbon double bonds in unsaturated lipids using microdroplet mass spectrometry. Analyst. 2021;146:2550–8. 10.1039/d0an02396e. PubMed
Zhao Y, Zhao H, Zhao X, Jia J, Ma Q, Zhang S, Zhang X, Chiba H, Hui SP, Ma X. Identification and Quantitation of C=C Location Isomers of Unsaturated Fatty Acids by Epoxidation Reaction and Tandem Mass Spectrometry. Anal Chem. 2017;89:10270–8. 10.1021/acs.analchem.7b01870. PubMed
Zhang J, Huo X, Guo C, Ma X, Huang H, He J, Wang X, Tang F. Rapid Imaging of Unsaturated Lipids at an Isomeric Level Achieved by Controllable Oxidation. Anal Chem. 2021;93:2114–24. 10.1021/acs.analchem.0c03888. PubMed
Unsihuay D, Su P, Hu H, Qiu J, Kuang S, Li Y, Sun X, Dey SK, Laskin J. Imaging and Analysis of Isomeric Unsaturated Lipids through Online Photochemical Derivatization of Carbon-Carbon Double Bonds**. Angew Chemie - Int Ed. 2021;60:7559–63. 10.1002/anie.202016734. PubMed PMC
Lydic TA, Busik JV, Reid GE. A monophasic extraction strategy for the simultaneous lipidome analysis of polar and nonpolar retina lipids. J Lipid Res. 2014;55:1797–809. 10.1194/jlr.D050302. PubMed PMC
Lee JC, Byeon SK, Moon MH. Relative Quantification of Phospholipids Based on Isotope-Labeled Methylation by Nanoflow Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry: Enhancement in Cardiolipin Profiling. Anal Chem. 2017;89:4969–77. 10.1021/acs.analchem.7b00297. PubMed
Barrientos RC, Zhang Q. Differential Isotope Labeling by Permethylation and Reversed-Phase Liquid Chromatography-Mass Spectrometry for Relative Quantification of Intact Neutral Glycolipids in Mammalian Cells. Anal Chem. 2019;91:9673–81. 10.1021/acs.analchem.9b01206. PubMed
Aoki K, Heaps AD, Strauss KA, Tiemeyer M. Mass spectrometric quantification of plasma glycosphingolipids in human GM3 ganglioside deficiency. Clin Mass Spectrom. 2019;14:106–14. 10.1016/j.clinms.2019.03.001. PubMed PMC
Ejsing CS, Bilgin M, Fabregat A. Quantitative profiling of long-chain bases by mass tagging and parallel reaction monitoring. PLoS ONE. 2015;10:1–17. 10.1371/journal.pone.0144817. PubMed PMC
Hanamatsu H, Nishikaze T, Miura N, Piao J, Okada K, Sekiya S, Iwamoto S, Sakamoto N, Tanaka K, Furukawa JI. Sialic Acid Linkage Specific Derivatization of Glycosphingolipid Glycans by Ring-Opening Aminolysis of Lactones. Anal Chem. 2018;90:13193–9. 10.1021/acs.analchem.8b02775. PubMed
Liu Y, Yang L, Li H, Liu J, Tian R. Derivatization strategy for sensitive identification of neutral and acidic glycosphingolipids using RPLC-MS. Int J Mass Spectrom. 2022;482:116937. 10.1016/j.ijms.2022.116937.
Sekiya S, Wada Y, Tanaka K. Derivatization for Stabilizing Sialic Acids in MALDI-MS. Anal Chem. 2005;77:4962–8. 10.1021/ac050287o. PubMed
Miura Y, Shinohara Y, Furukawa JI, Nagahori N, Nishimura SI. Rapid and simple solid-phase esterification of sialic acid residues for quantitative glycomics by mass spectrometry. Chem - A Eur J. 2007;13:4797–804. 10.1002/chem.200601872. PubMed
Kang P, Mechref Y, Klouckova I, Novotny MV. Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun Mass Spectrom. 2005;19:3421–8. 10.1002/rcm.2210. PubMed PMC
Chen P, Werner-Zwansiger U, Wiesler D, Pagel M, Novotny MV. Mass spectrometric analysis of benzoylated sialooligosaccharides and differentiation of terminal α2→3 and α2→6 sialogalactosylated linkages at subpicomole levels. Anal Chem. 1999;71:4969–73. 10.1021/ac990674w. PubMed
Huang Q, Liu D, Xin B, Cechner K, Zhou X, Wang H, Zhou A. Quantification of monosialogangliosides in human plasma through chemical derivatization for signal enhancement in LC-ESI-MS. Anal Chim Acta. 2016;929:31–8. 10.1016/j.aca.2016.04.043. PubMed
Nabetani T, Makino A, Hullin-Matsuda F, Hirakawa TA, Takeoka S, Okino N, Ito M, Kobayashi T, Hirabayashi Y. Multiplex analysis of sphingolipids using amine-reactive tags (iTRAQ). J Lipid Res. 2011;52:1294–302. 10.1194/jlr.D014621. PubMed PMC
Barrientos RC, Zhang Q. Isobaric Labeling of Intact Gangliosides toward Multiplexed LC-MS/MS-Based Quantitative Analysis. Anal Chem. 2018;90:2578–86. 10.1021/acs.analchem.7b04044. PubMed PMC
Peterka O, Jirásko R, Vaňková Z, Chocholoušková M, Wolrab D, Kulhánek J, Bureš F, Holčapek M. Simple and Reproducible Derivatization with Benzoyl Chloride: Improvement of Sensitivity for Multiple Lipid Classes in RP-UHPLC/MS. Anal Chem. 2021;93:13835–43. 10.1021/acs.analchem.1c02463. PubMed
Zheng SJ, Zheng J, Xiao HM, Wu DM, Feng YQ. Simultaneous quantitative analysis of multiple sphingoid bases by stable isotope labeling assisted liquid chromatography-mass spectrometry. Anal Chim Acta. 2019;1082:106–15. 10.1016/j.aca.2019.07.016. PubMed
Hermanson GR. Bioconjugate Techniques, 3rd ed. San Diego, USA: Academic Press; 2013.
Ghidoni R, Sonnino S, Masserini M, Orlando P, Tettamanti G. Specific tritium labeling of gangliosides at the 3-position of sphingosines. J Lipid Res. 1981;22:1286–95. 10.1016/s0022-2275(20)37322-3. PubMed
Song X, Ju H, Lasanajak Y, Kudelka MR, Smith DF, Cummings RD. Oxidative release of natural glycans for functional glycomics. Nat Methods. 2016;13:528–34. 10.1038/nmeth.3861. PubMed PMC
Domon B, Vath JE, Costello CE. Analysis of derivatized ceramides and neutral glycosphingolipids by high-performance tandem mass spectrometry. Anal Biochem. 1990;184:151–64. 10.1016/0003-2697(90)90028-8. PubMed
Liebisch G, Fahy E, Aoki J, Dennis EA, Durand T, Ejsing CS, Fedorova M, Feussner I, Griffiths WJ, Köfeler H, et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J Lipid Res. 2020;61:1539–55. 10.1194/jlr.S120001025. PubMed PMC