Comprehensive Identification of Glycosphingolipids in Human Plasma Using Hydrophilic Interaction Liquid Chromatography-Electrospray Ionization Mass Spectrometry
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
18-12204S
Czech Science Foundation
PubMed
33652716
PubMed Central
PMC7996953
DOI
10.3390/metabo11030140
PII: metabo11030140
Knihovny.cz E-resources
- Keywords
- fragmentation behavior, glycosphingolipids, human plasma, hydrophilic interaction liquid chromatography, lipid profile, lipidomics, mass spectrometry, sample preparation,
- Publication type
- Journal Article MeSH
Glycosphingolipids (GSL) represent a highly heterogeneous class of lipids with many cellular functions, implicated in a wide spectrum of human diseases. Their isolation, detection, and comprehensive structural analysis is a challenging task due to the structural diversity of GSL molecules. In this work, GSL subclasses are isolated from human plasma using an optimized monophasic ethanol-water solvent system capable to recover a broad range of GSL species. Obtained deproteinized plasma is subsequently purified and concentrated by C18-based solid-phase extraction (SPE). The hydrophilic interaction liquid chromatography coupled to electrospray ionization linear ion trap tandem mass spectrometry (HILIC-ESI-LIT-MS/MS) is used for GSL analysis in the human plasma extract. Our results provide an in-depth profiling and structural characterization of glycosphingolipid and some phospholipid subclasses identified in the human plasma based on their retention times and the interpretation of tandem mass spectra. The structural composition of particular lipid species is readily characterized based on the detailed interpretation of mass spectrometry (MS) and tandem mass spectrometry (MS/MS) spectra and further confirmed by specific fragmentation behavior following predictable patterns, which yields to the unambiguous identification of 154 GSL species within 7 lipid subclasses and 77 phospholipids representing the highest number of GSL species ever reported in the human plasma. The developed HILIC-ESI-MS/MS method can be used for further clinical and biological research of GSL in the human blood or other biological samples.
See more in PubMed
Malhotra R. Membrane Glycolipids: Functional Heterogeneity: A Review. Biochem. Anal. Biochem. 2012;1:4172. doi: 10.4172/2161-1009.1000108. DOI
Karlsson H., Halim A., Teneberg S. Differentiation of glycosphingolipid-derived glycan structural isomers by liquid chromatography/mass spectrometry. Glycobiology. 2010;20:1103–1116. doi: 10.1093/glycob/cwq070. PubMed DOI
Gillard B.K., Thurmon L.T., Marcus D.M. Variable subcellular localization of glycosphingolipids. Glycobiology. 1993;3:57–67. doi: 10.1093/glycob/3.1.57. PubMed DOI
Zhang X., Kiechle F.L. Review: Glycosphingolipids in Health and Disease. Ann. Clin. Lab. Sci. 2004;34:3–13. PubMed
Hanada K. Sphingolipids in infectious diseases. Jpn. J. Infect. Dis. 2005;58:131–148. PubMed
Levery S.B. Glycosphingolipid structural analysis and glycosphingolipidomics. Methods Enzymol. 2005;405:300–369. doi: 10.1016/S0076-6879(05)05012-3. PubMed DOI
Albrecht S., Vainauskas S., Stöckmann H., McManus C., Taron C.H., Rudd P.M. Comprehensive Profiling of Glycosphingolipid Glycans Using a Novel Broad Specificity Endoglycoceramidase in a High-Throughput Workflow. Anal. Chem. 2016;88:4795–4802. doi: 10.1021/acs.analchem.6b00259. PubMed DOI
Haynes C.A., Allegood J.C., Park H., Sullards M.C. Sphingolipidomics: Methods for the comprehensive analysis of sphingolipids. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009;877:2696–2708. doi: 10.1016/j.jchromb.2008.12.057. PubMed DOI PMC
Merrill A.H., Sullards M.C., Allegood J.C., Kelly S., Wang E. Sphingolipidomics: High-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods. 2005;36:207–224. doi: 10.1016/j.ymeth.2005.01.009. PubMed DOI
Schweppe C.H., Hoffmann P., Nofer J.R., Pohlentz G., Mormann M., Karch H., Friedrich A.W., Müthing J. Neutral glycosphingolipids in human blood: A precise mass spectrometry analysis with special reference to lipoprotein-associated Shiga toxin receptors. J. Lipid Res. 2010;51:2282–2294. doi: 10.1194/jlr.M006759. PubMed DOI PMC
Farwanah H., Kolter T. Lipidomics of glycosphingolipids. Metabolites. 2012;2:134–164. doi: 10.3390/metabo2010134. PubMed DOI PMC
Kolter T., Sandhoff K. Sphingolipids—Their metabolic pathways and the pathobiochemistry of neurodegenerative diseases. Angew. Chem. Int. Ed. 1999;38:1532–1568. doi: 10.1002/(SICI)1521-3773(19990601)38:11<1532::AID-ANIE1532>3.0.CO;2-U. PubMed DOI
Ryland L.K., Fox T.E., Liu X., Loughran T.P., Kester M. Dysregulation of sphingolipid metabolism in cancer. Cancer Biol. Ther. 2011;11:138–149. doi: 10.4161/cbt.11.2.14624. PubMed DOI
Farwanah H., Kolter T., Sandhoff K. Mass spectrometric analysis of neutral sphingolipids: Methods, applications, and limitations. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2011;1811:854–860. doi: 10.1016/j.bbalip.2011.05.011. PubMed DOI
Farwanah H., Wirtz J., Kolter T., Raith K., Neubert R.H.H., Sandhoff K. Normal phase liquid chromatography coupled to quadrupole time of flight atmospheric pressure chemical ionization mass spectrometry for separation, detection and mass spectrometric profiling of neutral sphingolipids and cholesterol. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009;877:2976–2982. doi: 10.1016/j.jchromb.2009.07.008. PubMed DOI
Xu Y.H., Barnes S., Sun Y., Grabowski G.A. Multi-system disorders of glycosphingolipid and ganglioside metabolism. J. Lipid Res. 2010;51:1643–1675. doi: 10.1194/jlr.R003996. PubMed DOI PMC
Merrill A.H. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem. Rev. 2011;111:6387–6422. doi: 10.1021/cr2002917. PubMed DOI PMC
Bang D.Y., Byeon S.K., Moon M.H. Rapid and simple extraction of lipids from blood plasma and urine for liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 2014;1331:19–26. doi: 10.1016/j.chroma.2014.01.024. PubMed DOI
Daniotti J.L., Vilcaes A.A., Demichelis V.T., Ruggiero F.M., Rodriguez-Walker M. Glycosylation of glycolipids in cancer: Basis for development of novel therapeutic approaches. Front. Oncol. 2013;3:306. doi: 10.3389/fonc.2013.00306. PubMed DOI PMC
Durrant L.G., Noble P., Spendlove I. Immunology in the clinic review series; focus on cancer: Glycolipids as targets for tumour immunotherapy. Clin. Exp. Immunol. 2012;167:206–215. doi: 10.1111/j.1365-2249.2011.04516.x. PubMed DOI PMC
Anugraham M., Everest-Dass A.V., Jacob F., Packer N.H. A platform for the structural characterization of glycans enzymatically released from glycosphingolipids extracted from tissue and cells. Rapid Commun. Mass Spectrom. 2015;29:545–561. doi: 10.1002/rcm.7130. PubMed DOI
Furukawa J.I., Sakai S., Yokota I., Okada K., Hanamatsu H., Kobayashi T., Yoshida Y., Higashino K., Tamura T., Igarashi Y., et al. Quantitative GSL-glycome analysis of human whole serum based on an EGCase digestion and glycoblotting method. J. Lipid Res. 2015;56:2399–2407. doi: 10.1194/jlr.D062083. PubMed DOI PMC
Furukawa K., Ohmi Y., Ohkawa Y., Bhuiyan R.H., Zhang P., Tajima O., Hashimoto N., Hamamura K., Furukawa K. New era of research on cancer-associated glycosphingolipids. Cancer Sci. 2019;110:1544–1551. doi: 10.1111/cas.14005. PubMed DOI PMC
Matyash V., Liebisch G., Kurzchalia T.V., Shevchenko A., Schwudke D. Lipid extraction by methyl-terf-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008;49:1137–1146. doi: 10.1194/jlr.D700041-JLR200. PubMed DOI PMC
Satomi Y., Hirayama M., Kobayashi H. One-step lipid extraction for plasma lipidomics analysis by liquid chromatography mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017;1063:93–100. doi: 10.1016/j.jchromb.2017.08.020. PubMed DOI
Merrill A.H., Stokes T.H., Momin A., Park H., Portz B.J., Kelly S., Wang E., Sullards M.C., Wang M.D. Sphingolipidomics: A valuable tool for understanding the roles of sphingolipids in biology and disease. J. Lipid Res. 2009;50:97–102. doi: 10.1194/jlr.R800073-JLR200. PubMed DOI PMC
Skotland T., Ekroos K., Kavaliauskiene S., Bergan J., Kauhanen D., Lintonen T., Sandvig K. Determining the Turnover of Glycosphingolipid Species by Stable-Isotope Tracer Lipidomics. J. Mol. Biol. 2016;428:4856–4866. doi: 10.1016/j.jmb.2016.06.013. PubMed DOI
Barrientos R.C., Zhang Q. Recent advances in the mass spectrometric analysis of glycosphingolipidome—A review. Anal. Chim. Acta. 2020;1132:134–155. doi: 10.1016/j.aca.2020.05.051. PubMed DOI PMC
Zaia J. Mass spectrometry of oligosaccharides. Mass Spectrom. Rev. 2004;23:161–227. doi: 10.1002/mas.10073. PubMed DOI
Zaia J. Mass Spectrometry and Glycomics. Omics J. Integr. Biol. 2010;14:401–418. doi: 10.1089/omi.2009.0146. PubMed DOI PMC
Merrill A.H., Sullards M.C. Opinion article on lipidomics: Inherent challenges of lipidomic analysis of sphingolipids. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017;1862:774–776. doi: 10.1016/j.bbalip.2017.01.009. PubMed DOI PMC
Li Q., Xie Y., Wong M., Lebrilla C.B. Characterization of Cell Glycocalyx with Mass Spectrometry Methods. Cells. 2019;8:882. doi: 10.3390/cells8080882. PubMed DOI PMC
Merrill A.H., Wang M.D., Park M., Sullards M.C. (Glyco)sphingolipidology: An amazing challenge and opportunity for systems biology. Trends Biochem. Sci. 2007;32:457–468. doi: 10.1016/j.tibs.2007.09.004. PubMed DOI
Chen Y., Liu Y., Sullards M.C., Merrill A.H. An introduction to sphingolipid metabolism and analysis by new technologies. Neuromol. Med. 2010;12:306–319. doi: 10.1007/s12017-010-8132-8. PubMed DOI PMC
Wong M., Xu G., Park D., Barboza M., Lebrilla C.B. Intact glycosphingolipidomic analysis of the cell membrane during differentiation yields extensive glycan and lipid changes. Sci. Rep. 2018;8:10993. doi: 10.1038/s41598-018-29324-7. PubMed DOI PMC
Quehenberger O., Dennis E.A. The Human Plasma Lipidome—Mechanisms of Disease, Diversity of Lipids in Human Plasma. N. Engl. J. Med. 2011;365:1812–1823. doi: 10.1056/NEJMra1104901. PubMed DOI PMC
Lydic T.A., Busik J.V., Reid G.E. A monophasic extraction strategy for the simultaneous lipidome analysis of polar and nonpolar retina lipids. J. Lipid Res. 2014;55:1797–1809. doi: 10.1194/jlr.D050302. PubMed DOI PMC
Guo X., Lankmayr E. Phospholipid-based matrix effects in LC-MS bioanalysis. Bioanalysis. 2011;3:349–352. doi: 10.4155/bio.10.213. PubMed DOI
Yin A.B., Hawke D., Zhou D. Mass spectrometric analysis of glycosphingolipid antigens. J. Vis. Exp. 2013;74:4224. doi: 10.3791/4224. PubMed DOI PMC
Schnaar R.L. Isolation of Glycosphingolipids. Methods Enzymol. 1994;230:348–370. doi: 10.1016/0076-6879(94)30024-0. PubMed DOI
Bodennec J., Koul O., Aguado I., Brichon G., Zwingelstein G., Portoukalian J. A procedure for fractionation of sphingolipid classes by solid-phase extraction on aminopropyl cartridges. J. Lipid Res. 2000;41:1524–1531. doi: 10.1016/S0022-2275(20)33465-9. PubMed DOI
Mirzaian M., Kramer G., Poorthuis B.J.H.M. Quantification of sulfatides and lysosulfatides in tissues and body fluids by liquid chromatography-tandem mass spectrometry. J. Lipid Res. 2015;56:936–943. doi: 10.1194/jlr.M057232. PubMed DOI PMC
Jiang X., Cheng H., Yang K., Gross R.W., Han X. Alkaline methanolysis of lipid extracts extends shotgun lipidomics analyses to the low-abundance regime of cellular sphingolipids. Anal. Biochem. 2007;371:135–145. doi: 10.1016/j.ab.2007.08.019. PubMed DOI PMC
Park D.D., Xu G., Wong M., Phoomak C., Liu M., Haigh N.E., Wongkham S., Yang P., Maverakis E., Lebrilla C.B. Membrane glycomics reveal heterogeneity and quantitative distribution of cell surface sialylation. Chem. Sci. 2018;9:6271–6285. doi: 10.1039/C8SC01875H. PubMed DOI PMC
Hájek R., Jirásko R., Lísa M., Cífková E., Holčapek M. Hydrophilic Interaction Liquid Chromatography-Mass Spectrometry Characterization of Gangliosides in Biological Samples. Anal. Chem. 2017;89:12425–12432. doi: 10.1021/acs.analchem.7b03523. PubMed DOI
Hájek R., Lísa M., Khalikova M., Jirásko R., Cífková E., Študent V., Vrána D., Opálka L., Vávrová K., Matzenauer M., et al. HILIC/ESI-MS determination of gangliosides and other polar lipid classes in renal cell carcinoma and surrounding normal tissues. Anal. Bioanal. Chem. 2018;410:6585–6594. doi: 10.1007/s00216-018-1263-8. PubMed DOI
Pham T.H., Zaeem M., Fillier T.A., Nadeem M., Vidal N.P., Manful C., Cheema S., Cheema M., Thomas R.H. Targeting Modified Lipids during Routine Lipidomics Analysis using HILIC and C30 Reverse Phase Liquid Chromatography coupled to Mass Spectrometry. Sci. Rep. 2019;9:5048. doi: 10.1038/s41598-019-41556-9. PubMed DOI PMC
Domon B., Costello C.E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 1988;5:397–409. doi: 10.1007/BF01049915. DOI
Costello C.E., Vath J.E. Tandem mass spectrometry of glycolipids. Methods Enzymol. 1990;193:738–768. doi: 10.1016/0076-6879(90)93448-T. PubMed DOI
Domon B., Vath J.E., Costello C.E. Analysis of derivatized ceramides and neutral glycosphingolipids by high-performance tandem mass spectrometry. Anal. Biochem. 1990;184:151–164. doi: 10.1016/0003-2697(90)90028-8. PubMed DOI
Ann Q., Adams J. Structure determination of ceramides and neutral glycosphingolipids by collisional activation of [M + Li]+ ions. J. Am. Soc. Mass Spectrom. 1992;3:260–263. doi: 10.1016/1044-0305(92)87010-V. PubMed DOI
O’Brien J.P., Brodbelt J.S. Structural Characterization of Gangliosides and Glycolipids via Ultraviolet Photodissociation Mass Spectrometry. Anal. Chem. 2013;85:10399–10407. doi: 10.1021/ac402379y. PubMed DOI PMC
Fong B.Y., Ma L., Khor G.L., Van Der Does Y., Rowan A., McJarrow P., MacGibbon A.K.H. Ganglioside Composition in Beef, Chicken, Pork, and Fish Determined Using Liquid Chromatography-High-Resolution Mass Spectrometry. J. Agric. Food Chem. 2016;64:6295–6305. doi: 10.1021/acs.jafc.6b02200. PubMed DOI
Ikeda K., Shimizu T., Taguchi R. Targeted analysis of ganglioside and sulfatide molecular species by LC/ESI-MS/MS with theoretically expanded multiple reaction monitoring. J. Lipid Res. 2008;49:2678–2689. doi: 10.1194/jlr.D800038-JLR200. PubMed DOI
Hsu F.F., Bohrer A., Turk J. Electrospray ionization tandem mass spectrometric analysis of sulfatide. Determination of fragmentation patterns and characterization of molecular species expressed in brain and in pancreatic islets. Biochim. Biophys. Acta Lipids Lipid Metab. 1998;1392:202–216. doi: 10.1016/S0005-2760(98)00034-4. PubMed DOI
Hsu F.F., Turk J. Studies on sulfatides by quadrupole ion-trap mass spectrometry with electrospray ionization: Structural characterization and the fragmentation processes that include an unusual internal galactose residue loss and the classical charge-remote fragmentation. J. Am. Soc. Mass Spectrom. 2004;15:536–546. doi: 10.1016/j.jasms.2003.12.007. PubMed DOI
Yuki D., Sugiura Y., Zaima N., Akatsu H., Hashizume Y., Yamamoto T., Fujiwara M., Sugiyama K., Setou M. Hydroxylated and non-hydroxylated sulfatide are distinctly distributed in the human cerebral cortex. Neuroscience. 2011;193:44–53. doi: 10.1016/j.neuroscience.2011.07.045. PubMed DOI
Rovillos M.J., Pauling J.K., Hannibal-Bach H.K., Vionnet C., Conzelmann A., Ejsing C.S. Structural characterization of suppressor lipids by high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 2016;30:2215–2227. doi: 10.1002/rcm.7704. PubMed DOI
Quehenberger O., Armando A.M., Brown A.H., Milne S.B., Myers D.S., Merrill A.H., Bandyopadhyay S., Jones K.N., Kelly S., Shaner R.L., et al. Lipidomics reveals a remarkable diversity of lipids in human plasma1. J. Lipid Res. 2010;51:3299–3305. doi: 10.1194/jlr.M009449. PubMed DOI PMC
U.S. Department of Health and Human Services. Food and Drug Administration Bioanalytical Method Validation: Guidance for Industry. [(accessed on 10 December 2020)];2018 Available online: https://www.fda.gov/media/70858/download.
European Medicines Agency Guideline on Bioanalytical Method Validation EMEA/CHMP/EWP/192217/2009 Rev. 1 Corr. 2**. [(accessed on 10 December 2020)];2011 Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf.
Wolrab D., Chocholoušková M., Jirásko R., Peterka O., Holčapek M. Validation of lipidomic quantitative methods based on lipid class separation—mass spectrometry: Comparison of supercritical fluid chromatography and hydrophilic interaction liquid chromatography. Anal. Bioanal. Chem. 2020;412:2375–2388. doi: 10.1007/s00216-020-02473-3. PubMed DOI
Chocholoušková M., Jirásko R., Vrána D., Gatěk J., Melichar B., Holčapek M. eversed-phase UHPLC/ESI-MS determination of oxylipins in human plasma: A case study of female breast cancer. Anal. Bioanal. Chem. 2019;411:1239–1251. doi: 10.1007/s00216-018-1556-y. PubMed DOI
Recommendations for good practice in MS-based lipidomics