thin-layer chromatography
Dotaz
Zobrazit nápovědu
Boswellia resin is an exudate from the cut bark of Boswellia trees. The main constituents of pharmacological interest are boswellic acids (pentacyclic triterpenoids), namely α-boswellic acid, β-boswellic acid, 3-O-acetyl-α-boswellic acid, 3-O-acetyl-β-boswellic acid, 11-keto-β-boswellic acid, and 3-O-acetyl-11-keto-β-boswellic acid. Nowadays, dietary supplements with Boswellia serrata extract are used in the treatment of inflammatory joint diseases. Additionally, the constituents of Boswellia resin have shown potential for the treatment of other chronic inflammatory diseases and various types of cancer. Separation methods including ultra/high-performance liquid chromatography, gas chromatography, thin layer chromatography, supercritical fluid chromatography, and capillary electrochromatography coupled with UV or MS detection have been used for the determination of boswellic acids in various matrices (mostly plant material and biological samples). This review aims to provide a comprehensive summary of these separation methods, offering a critical discussion of their strengths and limitations in the analysis of boswellic acids. The knowledge of various separation methods plays a pivotal role in the quality control of herbal dietary supplements and the monitoring of the metabolism and pharmacokinetics of their constituents. The approaches based on metabolomics and network pharmacology represent new ways of fingerprinting secondary metabolites in Boswellia resin increasing the comprehensiveness of the output of these methods resulting in safer dietary supplements.
- MeSH
- Boswellia chemie MeSH
- lidé MeSH
- rostlinné extrakty chemie MeSH
- triterpeny * analýza izolace a purifikace MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The fibroblast growth factor receptor family members, FGFR1-4, are frequently overexpressed in various solid tumors, including breast cancer and sarcomas. This overexpression highlights the potential of the family of FGFRs as promising targets for cancer therapy. However, conventional FGFR kinase inhibitors often encounter challenges such as limited efficacy or drug resistance. In this study, we pursue an alternative strategy by designing a conjugate of the FGFR ligand FGF1 with the radioisotope 161Tb, for targeted therapy in FGFR-overexpressing cancer cells. FGF1 was engineered (eFGF1) to incorporate a single cysteine at the C terminus for site-specific labeling with a DOTA chelator. eFGF1-DOTA was mixed with the radioisotope 161Tb under mild conditions, resulting in a labeling efficiency above 90%. The nonradioactive ligands were characterized by mass spectrometry, while radioligands were characterized by thin-layer chromatography. The targeting function of the radioligands was assessed through confocal microscopy, flow cytometry, and Western blot analysis, focusing on binding to cancer cells and the activation of downstream signaling pathways related to FGFR. When compared to MCF-7 and RD cell lines with low FGFR expression, eFGF1-DOTA-Tb[161Tb] radioligands demonstrated significantly higher accumulation in FGFR-overexpressing cell lines (MCF-7 FGFR1 and RMS559), leading to enhanced cytotoxicity. Besides radionuclides, eFGF1 can also deliver doxorubicin (DOX) into cancer cells. Considering these characteristics, eFGF1-DOTA-Tb[161Tb] and eFGF1-DOX emerge as promising candidates for FGFR-targeted cancer therapy, and further evaluation in vivo is warranted.
- Publikační typ
- časopisecké články MeSH
The article contains information on the properties of fentanyl derivatives and a method for their simple orienta-tion identification. Thin-layer chromatography (TLC) was deliberately chosen to perform the experiment because it is the most suitable method for rapid analysis of the col-lected sample under the conditions of the field chemical laboratory operated by the Army of the Czech Republic. On the basis of the experimental work performed, it was found that the most suitable system for the identification of the fentanyl derivatives of interest by TLC is a system where the stationary phase consists of "alumina 60 F254 neutral" and the mobile phase is comprised of ethyl ace-tate and hexane in a ratio of 7:3. The findings are fully usable in practice and will be included in the standard operating procedures for the determination of these types of substances in the Field Transport Chemical Laboratory PPCHL-AL2/ch, most likely in the form of acertified methodology.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common causes of cancer-related deaths worldwide, accounting for 90% of primary pancreatic tumors with an average 5-year survival rate of less than 10%. PDAC exhibits aggressive biology, which, together with late detection, results in most PDAC patients presenting with unresectable, locally advanced, or metastatic disease. In-depth lipid profiling and screening of potential biomarkers currently appear to be a promising approach for early detection of PDAC or other cancers. Here, we isolated and characterized complex glycosphingolipids (GSL) from normal and tumor pancreatic tissues of patients with PDAC using a combination of TLC, chemical staining, carbohydrate-recognized ligand-binding assay, and LC/ESI-MS2. The major neutral GSL identified were GSL with the terminal blood groups A, B, H, Lea, Leb, Lex, Ley, P1, and PX2 determinants together with globo- (Gb3 and Gb4) and neolacto-series GSL (nLc4 and nLc6). We also revealed that the neutral GSL profiles and their relative amounts differ between normal and tumor tissues. Additionally, the normal and tumor pancreatic tissues differ in type 1/2 core chains. Sulfatides and GM3 gangliosides were the predominant acidic GSL along with the minor sialyl-nLc4/nLc6 and sialyl-Lea/Lex. The comprehensive analysis of GSL in human PDAC tissues extends the GSL coverage and provides an important platform for further studies of GSL alterations; therefore, it could contribute to the development of new biomarkers and therapeutic approaches.
- MeSH
- chromatografie kapalinová MeSH
- chromatografie na tenké vrstvě MeSH
- duktální karcinom slinivky břišní diagnóza patofyziologie MeSH
- gangliosidy chemie MeSH
- glykosfingolipidy * analýza chemie MeSH
- lidé MeSH
- nádorové biomarkery metabolismus MeSH
- nádory slinivky břišní * diagnóza patofyziologie MeSH
- sulfoglykosfingolipidy chemie MeSH
- tandemová hmotnostní spektrometrie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
KEY POINTS: Regular exercise improves muscle functional capacity and clinical state of patients with idiopathic inflammatory myopathy (IIM). In our study, we used an in vitro model of human primary muscle cell cultures, derived from IIM patients before and after a 6-month intensive supervised training intervention to assess the impact of disease and exercise on lipid metabolism dynamics. We provide evidence that muscle cells from IIM patients display altered dynamics of lipid metabolism and impaired adaptive response to saturated fatty acid load compared to healthy controls. A 6-month intensive supervised exercise training intervention in patients with IIM mitigated disease effects in their cultured muscle cells, improving or normalizing their capacity to handle lipids. These findings highlight the putative role of intrinsic metabolic defects of skeletal muscle in the pathogenesis of IIM and the positive impact of exercise, maintained in vitro by yet unknown epigenetic mechanisms. ABSTRACT: Exercise improves skeletal muscle function, clinical state and quality of life in patients with idiopathic inflammatory myopathy (IIM). Our aim was to identify disease-related metabolic perturbations and the impact of exercise in skeletal muscle cells of IIM patients. Patients underwent a 6-month intensive supervised training intervention. Muscle function, anthropometric and metabolic parameters were examined and muscle cell cultures were established (m. vastus lateralis; Bergström needle biopsy) before and after training from patients and sedentary age/sex/body mass index-matched controls. [14 C]Palmitate was used to determine fat oxidation and lipid synthesis (thin layer chromatography). Cells were exposed to a chronic (3 days) and acute (3 h) metabolic challenge (the saturated fatty acid palmitate, 100 μm). Reduced oxidative (intermediate metabolites, -49%, P = 0.034) and non-oxidative (diglycerides, -38%, P = 0.013) lipid metabolism was identified in palmitate-treated muscle cells from IIM patients compared to controls. Three days of palmitate exposure elicited distinct regulation of oxidative phosphorylation (OxPHOS) complex IV and complex V/ATP synthase (P = 0.012/0.005) and adipose triglyceride lipase in patients compared to controls (P = 0.045) (immunoblotting). Importantly, 6 months of training in IIM patients improved lipid metabolism (CO2 , P = 0.010; intermediate metabolites, P = 0.041) and activation of AMP kinase (P = 0.007), and nearly normalized palmitate-induced changes in OxPHOS proteins in myotubes from IIM patients, in parallel with improvements of patients' clinical state. Myotubes from IIM patients displayed altered dynamics of lipid metabolism and impaired response to metabolic challenge with saturated fatty acid. Our observations suggest that metabolic defects intrinsic to skeletal muscle could represent non-immune pathomechanisms, which can contribute to muscle weakness in IIM. A 6-month training intervention mitigated disease effects in muscle cells in vitro, indicating the existence of epigenetic regulatory mechanisms.
V predkladanej práci bola reakciou 3-alkoxy-4-hydroxyfenylalkanónov s 2-chlórmetyloxiránom a v nasledujúcom stupni s heterocyklickými amínmi (pyrolidínom, azepánom, 4-metylpiperazínom a 2-metoxyfenylpiperazínom) syntetizovaná séria siedmych derivátov s heteroaminopropanolovým reťazcom. Uvedené zlúčeniny boli pripravené vo forme racemátov. Čistota pripravených látok bola potvrdená chromatografiou na tenkej vrstve a boli u nich zmerané UV, IČ a 1H NMR spektrá. Enantioseparácia bola uskutočnená pomocou HPLC na chirálnej kolóne Chiralpak AD založenej na tris(3,5-dimetylfenyl)karbamáte. Účinnosť enantioseparácie bola sledovaná v závislosti od zloženia mobilnej fázy (hexán : etanol : metanol : etyletánamín) a od štruktúry pripravených látok. Enantiosepáracia na základnú líniu sa dosiahla u všetkých látok v mobilných fázach A (78 : 11 : 11 : 0,1 v/v/v/v) a B (80 : 10 : 10 : 0,1 v/v/v/v), s faktorom selektivity v rozmedzí 1,07 – 1,42 a rozlíšením v rozmedzí 0,76 – 5,47. V mobilnej fáze so zvýšeným obsahom hexánu nedochádzalo k enantioseparácii piperazínových derivátov.
The present paper reports the synthesis of a series of seven compounds with a hetero aminopropanol chain. The compounds were prepared by the conversion of 3-alkoxy-4-hydroxyphenyl alkanones with 2-chloromethyl oxirane and subsequent reaction of the products with heterocyclic amines (pyrrolidine, azepane, 4-methylpiperazine and 2-methoxyphenyl piperazine). The target compounds were synthesized in the form of racemates. The purity of the products was confirmed by thin layer chromatography and their IR, UV-VIS and 1H-NMR spectra were recorded. Enantioseparation of the racemic products was accomplished by HPLC on a Chiralpak AD chiral chromatographic column with tris(3,5-dimethylphenyl)carbamate as the chiral selector. The efficiency of enantioseparation was determined in relation to the composition of the mobile phase (hexane : ethanol : methanol : ethylethanamine) and to the structure of the prepared compounds. Baseline separation was achieved with all compounds using mobile phases A (78 : 11 : 11 : 0,1 v/v/v/v) and B (80 : 10 : 10 : 0,1 v/v/v/v), with selectivity factor ranging from 1.07 to 1.42 and resolution from 0.76 to 5.47. The mobile phase containing a higher amount of hexane did not allow for successful enantioseparation of the piperazine derivatives.
We present a biological profile of 16 Aspergillus niger environmental isolates from different types of soils and solid substrates across a pH range, from an ultra-acidic (<3.5) to a very strongly alkaline (>9.0) environment. The soils and solid substrates also differ in varying degrees of anthropic pollution, which in most cases is caused by several centuries of mining activity at old mining sites, sludge beds, ore deposits, stream sediments, and coal dust. The values of toxic elements (As, Sb, Zn, Cu, Pb) very often exceed the limit values. The isolates possess different macro- and micromorphological features. All the identifications of Aspergillus niger isolates were confirmed by molecular PCR analysis and their similarity was expressed by RAMP analysis. The biochemical profile of isolates based on FF-MicroPlate tests from the Biolog system showed identical biochemical reactions in 50 tests, while in 46 tests the utilisation reactions differed. The highest similarity of strains isolated from substrates with the same pH, as well as the most suitable biochemical tests for analysis of the phenotypic similarity of isolated strains, were confirmed when evaluating the biochemical profile using multicriterial analysis in the Canoco program. The isolates were screened for mycotoxin production by thin-layer chromatography (TLC), as well. Two of them were able to synthesise ochratoxin A, while none produced fumonisins under experimental conditions. Presence of toxic compounds in contaminated sites may affect environmental microscopic fungi and cause the genome alteration, which may result in changes of their physiology, including the production of different (secondary) metabolites, such as mycotoxins.
- Publikační typ
- časopisecké články MeSH
Passiflora species, mangosteen, and cherimoya peels are a source of bioactive phenolic compounds. Nevertheless, a significant fraction of polyphenols, called non-extractable polyphenols (NEPs), are retained in the extraction residue after a conventional extraction. Thus, alkaline, acid, and enzymatic-assisted extractions to recover high contents of antioxidant NEPs from the extraction residue of fruit peels, were compared in this work. A high-performance thin-layer chromatography method with UV/Vis detection was developed in order to obtain the phenolic profile for the extracts. The most intense bands were further analyzed by direct analysis in real-time-high-resolution mass spectrometry to tentatively identified NEPs in fruit peel extracts. Total phenolic and proanthocyanidin contents and antioxidant capacity of the extracts were measured to carry out a multivariate statistical analysis. Alkaline hydrolysis was the most efficient treatment to recover NEPs from fruit peels as well as a promising treatment to obtain antioxidant extracts along with EAE. Cherimoya peel extracts were the richest in antioxidant NEPs. This work highlights that many NEPs remain on the extraction residue of fruit peels after conventional extraction and are not usually taken into account.
Streptomyces have been reported as a remarkable source for bioactive secondary metabolites with complex structural and functional diversity. In this study, 35 isolates of genus Streptomyces were purified from rhizospheric and marine soils collected from previously unexplored habitats and screened for antimicrobial activities. One of these isolates, G1, when tested in vitro, was found highly active against wide range of microbes including Gram-positive, Gram-negative bacteria, and different fungal pathogens. It was identified as mesophilic, alkaliphilic, and moderately halotolerant as it showed optimum growth at temperature 30 °C, pH 8.0 in casein-starch-peptone-yeast extract-malt extract medium supplemented with 5% NaCl. Sequence analysis of the 16S rRNA gene indicated 100% identity of this isolate to Streptomyces fimbriatus. Moreover, maximum antimicrobial activity was achieved in starch nitrate medium supplemented with 1% glycerol as carbon and 0.03% soy meal as nitrogen source. The antimicrobial compounds produced by this isolate were extracted in methanol. Bioassay-guided fractionation through thin layer chromatography of methanolic extract resulted in the separation of a most active fraction with an Rf value of 0.46. This active fraction was characterized by FTIR and LCMS analysis and found similar to streptothricin D like antibiotic with m/z 758.42.
Antiphospholipid syndrome (APS) is a hypercoagulation condition associated with the incidence of heterogenic antiphospholipid antibodies (aPLs), which non-specifically affect hemostasis processes. APS is clinically manifested by recurrent arterial and venous thromboses and reproduction losses. The aPL antibodies, which may induce clinical manifestations of APS, include criteria antibodies anti-cardiolipin, anti-β2-glycoprotein-I, and lupus anticoagulant, but also non-criteria antibodies, for example anti-β2-glycoprotein-I domain I, anti-phosphatidylserine/prothrombin, anti-annexin V, and many others. APS occurs mostly in patients of younger and middle age, most frequently in females. Laboratory diagnostics of APS are quite difficult, as they include a wide spectrum of examining methods, which are based on various principles of detection and are performed using various laboratory techniques. The objective of the review is to describe the current state of potentially examined biomarkers and methods in APS diagnostics. The aforementioned biomarkers are lupus anticoagulant, anti-β2-glycoprotein-I, anti-cardiolipin, anti-β2-glycoprotein-I domain I, anti-phosphatidylserine/prothrombin, anti-β2-glycoprotein-I IgA, anti-cardiolipin IgA, anti-annexin V and II, anti-prothrombin, anti-cardiolipin/vimentin, anti-protein S/protein C, and antibodies against phospholipid antigens for whose diagnostics we may use some of the methods established for a long time and some of the modern methods-the coagulation method for the determination of lupus anticoagulant (LA), enzyme-linked imunosorbent assay (ELISA), chemiluminescence analysis (CLIA), multiplex fluorescence flow immunoassay (MFFIA), fluorescence enzyme immunoassay (EliA), line immunoassay (LIA), multiline dot assay (MLDA), and thin-layer chromatography (TLC). Conclusion: Antibodies against phosphatidylethanolamine, phosphatidic acid, phosphatidylserine, phosphatidylinositol, cardiolipin/vimentin complex, and annexin V are currently the most studied new markers. However, these assays have not been standardized until now, both from the laboratory and clinical point of view. In this review we summarize the evidence of the most studied aPL markers and their potential clinical significance in seronegative APS (SN-APS).
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH