• This record comes from PubMed

Four-Dimensional Lipidomic Analysis Using Comprehensive Online UHPLC × UHPSFC/Tandem Mass Spectrometry

. 2024 Dec 10 ; 96 (49) : 19439-19446. [epub] 20241127

Language English Country United States Media print-electronic

Document type Journal Article

Multidimensional chromatography offers enhanced chromatographic resolution and peak capacity, which are crucial for analyzing complex samples. This study presents a novel comprehensive online multidimensional chromatography method for the lipidomic analysis of biological samples, combining lipid class and lipid species separation approaches. The method combines optimized reversed-phase ultrahigh-performance liquid chromatography (RP-UHPLC) in the first dimension, utilizing a 150 mm long C18 column, with ultrahigh-performance supercritical fluid chromatography (UHPSFC) in the second dimension, using a 10 mm long silica column, both with sub-2 μm particles. A key advantage of employing UHPSFC in the second dimension is its ability to perform ultrafast analysis using gradient elution with a sampling time of 0.55 min. This approach offers a significant increase in the peak capacity. Compared to our routinely used 1D methods, the peak capacity of the 4D system is 10 times higher than RP-UHPLC and 18 times higher than UHPSFC. The entire chromatographic system is coupled with a high-resolution quadrupole-time-of-flight (QTOF) mass analyzer using electrospray ionization (ESI) in both full-scan and tandem mass spectrometry (MS/MS) and with positive- and negative-ion polarities, enabling the detailed characterization of the lipidome. The confident identification of lipid species is achieved through characteristic ions in both polarity modes, information from MS elevated energy (MSE) and fast data-dependent analysis scans, and mass accuracy below 5 ppm. This analytical method has been used to characterize the lipidomic profile of the total lipid extract from human plasma, which has led to the identification of 298 lipid species from 16 lipid subclasses.

See more in PubMed

Gao L.; Zhang J.; Zhang W.; Shan Y.; Liang Z.; Zhang L.; Huo Y.; Zhang Y. Integration of Normal Phase Liquid Chromatography with Supercritical Fluid Chromatography for Analysis of Fruiting Bodies of Ganoderma Lucidum. J. Sep. Sci. 2010, 33, 3817–3821. 10.1002/jssc.201000453. PubMed DOI

Lísa M.; Cífková E.; Holčapek M. Lipidomic Profiling of Biological Tissues Using Off-Line Two-Dimensional High-Performance Liquid Chromatography-Mass Spectrometry. J. Chromatogr., A 2011, 1218, 5146–5156. 10.1016/j.chroma.2011.05.081. PubMed DOI

François I.; Sandra P. Comprehensive supercritical fluid chromatography×reversed phase liquid chromatography for the analysis of the fatty acids in fish oil. J. Chromatogr., A 2009, 1216, 4005–4012. 10.1016/j.chroma.2009.02.078. PubMed DOI

Yang L.; Nie H.; Zhao F.; Song S.; Meng Y.; Bai Y.; Liu H. A Novel Online Two-Dimensional Supercritical Fluid Chromatography/Reversed Phase Liquid Chromatography–Mass Spectrometry Method for Lipid Profiling. Anal. Bioanal. Chem. 2020, 412, 2225–2235. 10.1007/s00216-019-02242-x. PubMed DOI

Holčapek M.; Velínská H.; Lísa M.; Česla P. Orthogonality of Silver-Ion and Non-Aqueous Reversed-Phase HPLC/MS in the Analysis of Complex Natural Mixtures of Triacylglycerols. J. Sep. Sci. 2009, 32, 3672–3680. 10.1002/jssc.200900401. PubMed DOI

Holčapek M.; Ovčačíková M.; Lísa M.; Cífková E.; Hájek T. Continuous Comprehensive Two-Dimensional Liquid Chromatography–Electrospray Ionization Mass Spectrometry of Complex Lipidomic Samples. Anal. Bioanal. Chem. 2015, 407, 5033–5043. 10.1007/s00216-015-8528-2. PubMed DOI

Sorensen M. J.; Miller K. E.; Jorgenson J. W.; Kennedy R. T. Two-Dimensional Liquid Chromatography-Mass Spectrometry for Lipidomics Using off-Line Coupling of Hydrophilic Interaction Liquid Chromatography with 50 Cm Long Reversed Phase Capillary Columns. J. Chromatogr., A 2023, 1687, 463707.10.1016/j.chroma.2022.463707. PubMed DOI

Salivo S.; Beccaria M.; Sullini G.; Tranchida P. Q.; Dugo P.; Mondello L. Analysis of Human Plasma Lipids by Using Comprehensive Two-Dimensional Gas Chromatography with Dual Detection and with the Support of High-Resolution Time-of-Flight Mass Spectrometry for Structural Elucidation. J. Sep. Sci. 2015, 38, 267–275. 10.1002/jssc.201400844. PubMed DOI

Franchina F. A.; Zoccali M.; Tranchida P. Q.; Mondello L.. Potential of Comprehensive Two-Dimensional Gas Chromatography for the Analysis of Lipids. In Encyclopedia of Lipidomics; Springer Netherlands, 2016; pp 1–13.

Tranchida P. Q.; Costa R.; Donato P.; Sciarrone D.; Ragonese C.; Dugo P.; Dugo G.; Mondello L. Acquisition of Deeper Knowledge Onthe Human Plasma Fatty Acid Profile Exploiting Comprehensive 2-D GC. J. Sep. Sci. 2008, 31, 3347–3351. 10.1002/jssc.200800289. PubMed DOI

Kaplitz A. S.; Mostafa M. E.; Calvez S. A.; Edwards J. L.; Grinias J. P. Two-Dimensional Separation Techniques Using Supercritical Fluid Chromatography. J. Sep. Sci. 2021, 44, 426–437. 10.1002/jssc.202000823. PubMed DOI

Fahy E.; Subramaniam S.; Brown H. A.; Glass C. K.; Merrill A. H.; Murphy R. C.; Raetz C. R. H.; Russell D. W.; Seyama Y.; Shaw W.; Shimizu T.; Spener F.; Van Meer G.; VanNieuwenhze M. S.; White S. H.; Witztum J. L.; Dennis E. A. A Comprehensive Classification System for Lipids. J. Lipid Res. 2005, 46, 839–861. 10.1194/jlr.E400004-JLR200. PubMed DOI

Liebisch G.; Fahy E.; Aoki J.; Dennis E. A.; Durand T.; Ejsing C. S.; Fedorova M.; Feussner I.; Griffiths W. J.; Köfeler H.; Merrill A. H.; Murphy R. C.; O’Donnell V. B.; Oskolkova O.; Subramaniam S.; Wakelam M. J. O.; Spener F. Update on LIPID MAPS Classification, Nomenclature, and Shorthand Notation for MS-Derived Lipid Structures. J. Lipid Res. 2020, 61, 1539–1555. 10.1194/jlr.S120001025. PubMed DOI PMC

Han X.; Gross R. W. Shotgun Lipidomics: Electrospray Ionization Mass Spectrometric Analysis and Quantitation of Cellular Lipidomes Directly from Crude Extracts of Biological Samples. Mass Spectrom. Rev. 2005, 24, 367–412. 10.1002/mas.20023. PubMed DOI

Sigruener A.; Kleber M. E.; Heimerl S.; Liebisch G.; Schmitz G.; Maerz W. Glycerophospholipid and Sphingolipid Species and Mortality: The Ludwigshafen Risk and Cardiovascular Health (LURIC) Study. PLoS One 2014, 9, 85724.10.1371/journal.pone.0085724. PubMed DOI PMC

Fernandez C.; Sandin M.; Sampaio J. L.; Almgren P.; Narkiewicz K.; Hoffmann M.; Hedner T.; Wahlstrand B.; Simons K.; Shevchenko A.; James P.; Melander O. Plasma Lipid Composition and Risk of Developing Cardiovascular Disease. PLoS One 2013, 8, 71846.10.1371/journal.pone.0071846. PubMed DOI PMC

Suvitaival T.; Bondia-Pons I.; Yetukuri L.; Pöhö P.; Nolan J. J.; Hyötyläinen T.; Kuusisto J.; Orešič M. Lipidome as a Predictive Tool in Progression to Type 2 Diabetes in Finnish Men. Metabolism 2018, 78, 1–12. 10.1016/j.metabol.2017.08.014. PubMed DOI

Meikle P. J.; Wong G.; Barlow C. K.; Kingwell B. A. Lipidomics: Potential Role in Risk Prediction and Therapeutic Monitoring for Diabetes and Cardiovascular Disease. Pharmacol. Ther. 2014, 143, 12–23. 10.1016/j.pharmthera.2014.02.001. PubMed DOI

Ferré-González L.; Balaguer A. ´.; Roca M.; Ftara A.; Lloret A.; Cháfer-Pericás C. Brain Areas Lipidomics in Female Transgenic Mouse Model of Alzheimer’s Disease. Sci. Rep. 2024, 14, 870.10.1038/s41598-024-51463-3. PubMed DOI PMC

Liu Y.; Thalamuthu A.; Mather K. A.; Crawford J.; Ulanova M.; Wong M. W. K.; Pickford R.; Sachdev P. S.; Braidy N. Plasma Lipidome Is Dysregulated in Alzheimer’s Disease and Is Associated with Disease Risk Genes. Transl. Psychiatry 2021, 11, 344.10.1038/s41398-021-01362-2. PubMed DOI PMC

Wolrab D.; Jirásko R.; Peterka O.; Idkowiak J.; Chocholoušková M.; Vaňková Z.; Hořejší K.; Brabcová I.; Vrána D.; Študentová H.; Melichar B.; Holčapek M. Plasma Lipidomic Profiles of Kidney, Breast and Prostate Cancer Patients Differ from Healthy Controls. Sci. Rep. 2021, 11, 20322.10.1038/s41598-021-99586-1. PubMed DOI PMC

Wolrab D.; Jirásko R.; Cífková E.; Höring M.; Mei D.; Chocholoušková M.; Peterka O.; Idkowiak J.; Hrnčiarová T.; Kuchař L.; Ahrends R.; Brumarová R.; Friedecký D.; Vivo-Truyols G.; Škrha P.; Škrha J.; Kučera R.; Melichar B.; Liebisch G.; Burkhardt R.; Wenk M. R.; Cazenave-Gassiot A.; Karásek P.; Novotný I.; Greplová K.; Hrstka R.; Holčapek M. Lipidomic Profiling of Human Serum Enables Detection of Pancreatic Cancer. Nat. Commun. 2022, 13, 124.10.1038/s41467-021-27765-9. PubMed DOI PMC

Vaňková Z.; Peterka O.; Chocholoušková M.; Wolrab D.; Jirásko R.; Holčapek M. Retention Dependences Support Highly Confident Identification of Lipid Species in Human Plasma by Reversed-Phase UHPLC/MS. Anal. Bioanal. Chem. 2022, 414, 319–331. 10.1007/s00216-021-03492-4. PubMed DOI

Ovčačíková M.; Lísa M.; Cífková E.; Holčapek M. Retention Behavior of Lipids in Reversed-Phase Ultrahigh-Performance Liquid Chromatography–Electrospray Ionization Mass Spectrometry. J. Chromatogr., A 2016, 1450, 76–85. 10.1016/j.chroma.2016.04.082. PubMed DOI

Venkatramani C. J.; Al-Sayah M.; Li G.; Goel M.; Girotti J.; Zang L.; Wigman L.; Yehl P.; Chetwyn N. Simultaneous Achiral-Chiral Analysis of Pharmaceutical Compounds Using Two-Dimensional Reversed Phase Liquid Chromatography-Supercritical Fluid Chromatography. Talanta 2016, 148, 548–555. 10.1016/j.talanta.2015.10.054. PubMed DOI

Stevenson P. G.; Tarafder A.; Guiochon G. Comprehensive Two-Dimensional Chromatography with Coupling of Reversed Phase High Performance Liquid Chromatography and Supercritical Fluid Chromatography. J. Chromatogr., A 2012, 1220, 175–178. 10.1016/j.chroma.2011.11.020. PubMed DOI

Sarrut M.; Corgier A.; Crétier G.; Le Masle A.; Dubant S.; Heinisch S. Potential and Limitations of On-Line Comprehensive Reversed Phase Liquid Chromatography × supercritical Fluid Chromatography for the Separation of Neutral Compounds: An Approach to Separate an Aqueous Extract of Bio-Oil. J. Chromatogr., A 2015, 1402, 124–133. 10.1016/j.chroma.2015.05.005. PubMed DOI

Sun M.; Sandahl M.; Turner C. Comprehensive On-Line Two-Dimensional Liquid Chromatography × supercritical Fluid Chromatography with Trapping Column-Assisted Modulation for Depolymerised Lignin Analysis. J. Chromatogr., A 2018, 1541, 21–30. 10.1016/j.chroma.2018.02.008. PubMed DOI

Wolrab D.; Chocholoušková M.; Jirásko R.; Peterka O.; Holčapek M. Validation of Lipidomic Analysis of Human Plasma and Serum by Supercritical Fluid Chromatography–Mass Spectrometry and Hydrophilic Interaction Liquid Chromatography–Mass Spectrometry. Anal. Bioanal. Chem. 2020, 412, 2375–2388. 10.1007/s00216-020-02473-3. PubMed DOI

Wolrab D.; Peterka O.; Chocholoušková M.; Holčapek M. Ultrahigh-Performance Supercritical Fluid Chromatography/Mass Spectrometry in the Lipidomic Analysis. TrAC, Trends Anal. Chem. 2022, 149, 116546.10.1016/j.trac.2022.116546. DOI

Lerner R.; Baker D.; Schwitter C.; Neuhaus S.; Hauptmann T.; Post J. M.; Kramer S.; Bindila L. Four-Dimensional Trapped Ion Mobility Spectrometry Lipidomics for High Throughput Clinical Profiling of Human Blood Samples. Nat. Commun. 2023, 14, 937.10.1038/s41467-023-36520-1. PubMed DOI PMC

Li M.; Tong X.; Lv P.; Feng B.; Yang L.; Wu Z.; Cui X.; Bai Y.; Huang Y.; Liu H. A Not-Stop-Flow Online Normal-/Reversed-Phase Two-Dimensional Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry Method for Comprehensive Lipid Profiling of Human Plasma from Atherosclerosis Patients. J. Chromatogr., A 2014, 1372, 110–119. 10.1016/j.chroma.2014.10.094. PubMed DOI

Sun C.; Zhao Y. Y.; Curtis J. M. Elucidation of Phosphatidylcholine Isomers Using Two Dimensional Liquid Chromatography Coupled In-Line with Ozonolysis Mass Spectrometry. J. Chromatogr., A 2014, 1351, 37–45. 10.1016/j.chroma.2014.04.069. PubMed DOI

Ling Y. S.; Liang H. J.; Lin M. H.; Tang C. H.; Wu K. Y.; Kuo M. L.; Lin C. Y. Two-Dimensional LC-MS/MS to Enhance Ceramide and Phosphatidylcholine Species Profiling in Mouse Liver. Biomed. Chromatogr. 2014, 28, 1284–1293. 10.1002/bmc.3162. PubMed DOI

Berkecz R.; Tömösi F.; Körmöczi T.; Szegedi V.; Horváth J.; Janáky T. Comprehensive Phospholipid and Sphingomyelin Profiling of Different Brain Regions in Mouse Model of Anxiety Disorder Using Online Two-Dimensional (HILIC/RP)-LC/MS Method. J. Pharm. Biomed. Anal. 2018, 149, 308–317. 10.1016/j.jpba.2017.10.043. PubMed DOI

Baglai A.; Gargano A. F. G.; Jordens J.; Mengerink Y.; Honing M.; van der Wal S.; Schoenmakers P. J. Comprehensive Lipidomic Analysis of Human Plasma Using Multidimensional Liquid- and Gas-Phase Separations: Two-Dimensional Liquid Chromatography–Mass Spectrometry vs. Liquid Chromatography–Trapped-Ion-Mobility–Mass Spectrometry. J. Chromatogr., A 2017, 1530, 90–103. 10.1016/j.chroma.2017.11.014. PubMed DOI

Donato P.; Micalizzi G.; Oteri M.; Rigano F.; Sciarrone D.; Dugo P.; Mondello L. Comprehensive Lipid Profiling in the Mediterranean Mussel (Mytilus Galloprovincialis) Using Hyphenated and Multidimensional Chromatography Techniques Coupled to Mass Spectrometry Detection. Anal. Bioanal. Chem. 2018, 410, 3297–3313. 10.1007/s00216-018-1045-3. PubMed DOI

Mondello L.; Tranchida P. Q.; Stanek V.; Jandera P.; Dugo G.; Dugo P. Silver-Ion Reversed-Phase Comprehensive Two-Dimensional Liquid Chromatography Combined with Mass Spectrometric Detection in Lipidic Food Analysis. J. Chromatogr., A 2005, 1086, 91–98. 10.1016/j.chroma.2005.06.017. PubMed DOI

Byrdwell W. C. Comprehensive Dual Liquid Chromatography with Quadruple Mass Spectrometry (LC1MS2 × LC1MS2 = LC2MS4) for Analysis of Parinari Curatellifolia and Other Seed Oil Triacylglycerols. Anal. Chem. 2017, 89, 10537–10546. 10.1021/acs.analchem.7b02753. PubMed DOI

Hirata Y.; Sogabe I. Separation of Fatty Acid Methyl Esters by Comprehensive Two-Dimensional Supercritical Fluid Chromatography with Packed Columns and Programming of Sampling Duration. Anal. Bioanal. Chem. 2004, 378, 1999–2003. 10.1007/s00216-003-2487-8. PubMed DOI

Si W.; Liu Y.; Xiao Y.; Guo Z.; Jin G.; Yan J.; Shen A.; Zhou H.; Yang F.; Liang X. An offline two-dimensional supercritical fluid chromatography × reversed phase liquid chromatography tandem quadrupole time-of-flight mass spectrometry system for comprehensive gangliosides profiling in swine brain extract. Talanta 2020, 208, 120366.10.1016/j.talanta.2019.120366. PubMed DOI

Pirok B. W. J.; Stoll D. R.; Schoenmakers P. J. Recent Developments in Two-Dimensional Liquid Chromatography: Fundamental Improvements for Practical Applications. Anal. Chem. 2019, 91, 240–263. 10.1021/acs.analchem.8b04841. PubMed DOI PMC

Tokiyoshi K.; Matsuzawa Y.; Takahashi M.; Takeda H.; Hasegawa M.; Miyamoto J.; Tsugawa H. Using Data-Dependent and -Independent Hybrid Acquisitions for Fast Liquid Chromatography-Based Untargeted Lipidomics. Anal. Chem. 2024, 96, 991–996. 10.1021/acs.analchem.3c04400. PubMed DOI

Davis J. M.; Stoll D. R.; Carr P. W. Effect of First-Dimension Undersampling on Effective Peak Capacity in Comprehensive Two-Dimensional Separations. Anal. Chem. 2008, 80, 461–473. 10.1021/ac071504j. PubMed DOI

Stoll D. R.; Carr P. W. Two-Dimensional Liquid Chromatography: A State of the Art Tutorial. Anal. Chem. 2017, 89, 519–531. 10.1021/acs.analchem.6b03506. PubMed DOI

Holčapek M.; Liebisch G.; Ekroos K. Lipidomic Analysis. Anal. Chem. 2018, 90, 4249–4257. 10.1021/acs.analchem.7b05395. PubMed DOI

Peterka O.; Maccelli A.; Jirásko R.; Vaňková Z.; Idkowiak J.; Hrstka R.; Wolrab D.; Holčapek M. HILIC/MS Quantitation of Low-Abundant Phospholipids and Sphingolipids in Human Plasma and Serum: Dysregulation in Pancreatic Cancer. Anal. Chim. Acta 2024, 1288, 342144.10.1016/j.aca.2023.342144. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...