Procyanidin C1 from Viola odorata L. inhibits Na+,K+-ATPase
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35487935
PubMed Central
PMC9055044
DOI
10.1038/s41598-022-11086-y
PII: 10.1038/s41598-022-11086-y
Knihovny.cz E-zdroje
- MeSH
- flavonoidy MeSH
- ionty metabolismus MeSH
- proantokyanidiny * metabolismus farmakologie MeSH
- rostlinné extrakty farmakologie MeSH
- sodík metabolismus MeSH
- sodíko-draslíková ATPasa metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- Viola * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- flavonoidy MeSH
- ionty MeSH
- proantokyanidiny * MeSH
- procyanidin trimer C1 MeSH Prohlížeč
- rostlinné extrakty MeSH
- sodík MeSH
- sodíko-draslíková ATPasa MeSH
Members of the Viola genus play important roles in traditional Asian herbal medicine. This study investigates the ability of Viola odorata L. extracts to inhibit Na+,K+-ATPase, an essential animal enzyme responsible for membrane potential maintenance. The root extract of V. odorata strongly inhibited Na+,K+-ATPase, while leaf and seeds extracts were basically inactive. A UHPLC-QTOF-MS/MS metabolomic approach was used to identify the chemical principle of the root extract's activity, resulting in the detection of 35,292 features. Candidate active compounds were selected by correlating feature area with inhibitory activity in 14 isolated fractions. This yielded a set of 15 candidate compounds, of which 14 were preliminarily identified as procyanidins. Commercially available procyanidins (B1, B2, B3 and C1) were therefore purchased and their ability to inhibit Na+,K+-ATPase was investigated. Dimeric procyanidins B1, B2 and B3 were found to be inactive, but the trimeric procyanidin C1 strongly inhibited Na+,K+-ATPase with an IC50 of 4.5 µM. This newly discovered inhibitor was docked into crystal structures mimicking the Na3E1∼P·ADP and K2E2·Pi states to identify potential interaction sites within Na+,K+-ATPase. Possible binding mechanisms and the principle responsible for the observed root extract activity are discussed.
Department of Chemical Biology Faculty of Science Palacky University Olomouc Czech Republic
Department of Experimental Biology Faculty of Science Palacky University Olomouc Czech Republic
Department of Experimental Physics Faculty of Science Palacky University Olomouc Czech Republic
Zobrazit více v PubMed
Kaplan JH. Biochemistry of Na, K-ATPase. Annu. Rev. Biochem. 2002;71:511–535. doi: 10.1146/annurev.biochem.71.102201.141218. PubMed DOI
Zdravkovic I, Zhao C, Lev B, Cuervo JE, Noskov SY. Atomistic models of ion and solute transport by the sodium-dependent secondary active transporters. Biochim. Biophys. Acta Biomembr. 2012;1818:337–347. doi: 10.1016/j.bbamem.2011.10.031. PubMed DOI
Adams KF, et al. A perspective on re-evaluating digoxin’s role in the current management of patients with chronic systolic heart failure: Targeting serum concentration to reduce hospitalization and improve safety profile. Eur. J. Heart Fail. 2014;16:483–493. doi: 10.1002/ejhf.64. PubMed DOI
De Carvalho Aguiar P, et al. Mutations in the Na+/K+-ATPase α3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron. 2004;43:169–175. doi: 10.1016/j.neuron.2004.06.028. PubMed DOI
Segall L, et al. Alterations in the α2 isoform of Na, K-ATPase associated with familial hemiplegic migraine type 2. Proc. Natl. Acad. Sci. U. S. A. 2005;102:11106–11111. doi: 10.1073/pnas.0504323102. PubMed DOI PMC
Li Z, et al. Dihydroouabain, a novel radiosensitizer for cervical cancer identified by automated high-throughput screening. Radiother. Oncol. 2020;148:21–29. doi: 10.1016/j.radonc.2020.03.047. PubMed DOI
Wha Jun D, et al. Ouabain, a cardiac glycoside, inhibits the fanconi anemia/BRCA pathway activated by DNA interstrand cross-linking agents. PLoS ONE. 2013;8:e75905. doi: 10.1371/journal.pone.0075905. PubMed DOI PMC
Nilubol N, et al. Four clinically utilized drugs were identified and validated for treatment of adrenocortical cancer using quantitative high-throughput screening. J. Transl. Med. 2012;10:198. doi: 10.1186/1479-5876-10-198. PubMed DOI PMC
Guo J, et al. Screening of natural extracts for inhibitors against Japanese encephalitis virus infection. Antimicrob. Agents Chemother. 2020 doi: 10.1128/AAC.02373-19. PubMed DOI PMC
Prassas I, Paliouras M, Datti A, Diamandis EP. High-throughput screening identifies cardiac glycosides as potent inhibitors of human tissue kallikrein expression: Implications for cancer therapies. Clin. Cancer Res. 2008;14:5778–5784. doi: 10.1158/1078-0432.CCR-08-0706. PubMed DOI
Rupaimoole R, Yoon B, Zhang WC, Adams BD, Slack FJ. A high-throughput small molecule screen identifies ouabain as synergistic with mir-34a in killing lung cancer cells. Iscience. 2020;23(2):100878. doi: 10.1016/j.isci.2020.100878. PubMed DOI PMC
Zhang L, et al. Quantitative high-throughput drug screening identifies novel classes of drugs with anticancer activity in thyroid cancer cells: Opportunities for repurposing. J. Clin. Endocrinol. Metab. 2012;97:E319–E328. doi: 10.1210/jc.2011-2671. PubMed DOI PMC
Cayo MA, et al. A drug screen using human iPSC-derived hepatocyte-like cells reveals cardiac glycosides as a potential treatment for hypercholesterolemia. Cell Stem Cell. 2017;20:478–489.e5. doi: 10.1016/j.stem.2017.01.011. PubMed DOI PMC
Song Y, et al. Inhibitors of Na+/K+ ATPase exhibit antitumor effects on multicellular tumor spheroids of hepatocellular carcinoma. Sci. Rep. 2020;10:1–16. doi: 10.1038/s41598-019-56847-4. PubMed DOI PMC
Simpson CD, et al. Inhibition of the sodium potassium adenosine triphosphatase pump sensitizes cancer cells to anoikis and prevents distant tumor formation. Cancer Res. 2009;69:2739–2747. doi: 10.1158/0008-5472.CAN-08-2530. PubMed DOI
Blanco G, Mercer RW. Isozymes of the Na-K-ATPase: Heterogeneity in structure, diversity in function. Am. J. Physiol. Renal Physiol. 1998;275:633–650. doi: 10.1152/ajprenal.1998.275.5.F633. PubMed DOI
Toyoshima C, Kanai R, Cornelius F. First crystal structures of Na+, K+-ATPase: New light on the oldest ion pump. Structure. 2011;19:1732–1738. doi: 10.1016/j.str.2011.10.016. PubMed DOI
Clausen MV, Hilbers F, Poulsen H. The structure and function of the Na, K-ATPase isoforms in health and disease. Front. Physiol. 2017;8:371. doi: 10.3389/fphys.2017.00371. PubMed DOI PMC
Yap JQ, Seflova J, Sweazey R, Artigas P, Robia SL. FXYD proteins and sodium pump regulatory mechanisms. J. Gen. Physiol. 2021 doi: 10.1085/jgp.202012633. PubMed DOI PMC
Monti JLE, Montes MR, Rossi RC. Steady-state analysis of enzymes with non-Michaelis-Menten kinetics: The transport mechanism of Na+/K+-ATPase. J. Biol. Chem. 2018;293:1373–1385. doi: 10.1074/jbc.M117.799536. PubMed DOI PMC
Post RL, Kume S, Tobin T, Orcutt B, Sen AK. Flexibility of an active center in sodium-plus-potassium adenosine triphosphatase. J. Gen. Physiol. 1969;54:306–326. doi: 10.1085/jgp.54.1.306. PubMed DOI PMC
Albers RW. Biochemical aspects of active transport. Annu. Rev. Biochem. 1967;36:727–756. doi: 10.1146/annurev.bi.36.070167.003455. PubMed DOI
Kubala M. ATP-binding to P-type ATPases as revealed by biochemical, spectroscopic, and crystallographic experiments. Proteins Struct. Funct. Bioinform. 2006;64:1–12. doi: 10.1002/prot.20969. PubMed DOI
Clarke RJ, Catauro M, Rasmussen HH, Apell HJ. Quantitative calculation of the role of the Na+,K+-ATPase in thermogenesis. Biochim. Biophys. Acta Bioenerg. 2013;1827:1205–1212. doi: 10.1016/j.bbabio.2013.06.010. PubMed DOI
Páez O, et al. A Model for the homotypic interaction between Na+, K+-ATPase β1 subunits reveals the role of extracellular residues 221–229 in Its Ig-like domain. Int. J. Mol. Sci. 2019;20(18):4538. doi: 10.3390/ijms20184538. PubMed DOI PMC
Tokhtaeva E, et al. Epithelial junctions depend on intercellular trans-interactions between the Na, K-ATPase β1 subunits. J. Biol. Chem. 2011;286:25801–25812. doi: 10.1074/jbc.M111.252247. PubMed DOI PMC
Vagin O, Tokhtaeva E, Sachs G. The role of the β1 subunit of the Na, K-ATPase and its glycosylation in cell-cell adhesion. J. Biol. Chem. 2006;281:39573–39587. doi: 10.1074/jbc.M606507200. PubMed DOI
Kitamura N, et al. Mouse Na+/K+-ATPase β1-subunit has a K+-dependent cell adhesion activity for β-GlcNac-terminating glycans. Proc. Natl. Acad. Sci. U.S.A. 2005;102:2796–2801. doi: 10.1073/pnas.0409344102. PubMed DOI PMC
Rajasekaran SA, et al. Na, K-ATPase β-subunit is required for epithelial polarization, suppression of invasion, and cell motility. Mol. Biol. Cell. 2001;12:279–295. doi: 10.1091/mbc.12.2.279. PubMed DOI PMC
Laursen M, Yatime L, Nissen P, Fedosova NU. Crystal structure of the high-affinity Na+, K+-ATPase–ouabain complex with Mg2+ bound in the cation binding site. Proc. Natl. Acad. Sci. U.S.A. 2013;110:10958–10963. doi: 10.1073/pnas.1222308110. PubMed DOI PMC
Aperia A, Akkuratov EE, Fontana JM, Brismar H. Na+-K+-ATPase, a new class of plasma membrane receptors. Am. J. Physiol.-Cell Physiol. 2016;310(7):C491–C495. doi: 10.1152/ajpcell.00359.2015. PubMed DOI
Xie Z, Askari A. Na+/K+-ATPase as a signal transducer. Eur. J. Biochem. 2002;269:2434–2439. doi: 10.1046/j.1432-1033.2002.02910.x. PubMed DOI
Hamlyn JM, et al. Identification and characterization of a ouabain-like compound from human plasma. Proc. Natl. Acad. Sci. U.S.A. 1991;88:6259–6263. doi: 10.1073/pnas.88.14.6259. PubMed DOI PMC
Schoner W. Endogenous cardiac glycosides, a new class of steroid hormones. Eur. J. Biochem. 2002;269:2440–2448. doi: 10.1046/j.1432-1033.2002.02911.x. PubMed DOI
Bagrov AY, Shapiro JI, Fedorova OV. Endogenous cardiotonic steroids: Physiology, pharmacology, and novel therapeutic targets. Pharmacol. Rev. 2009;61:9–38. doi: 10.1124/pr.108.000711. PubMed DOI PMC
Lewis LK, et al. Ouabain is not detectable in human plasma. Hypertension. 1994;24:549–555. doi: 10.1161/01.HYP.24.5.549. PubMed DOI
Baecher S, Kroiss M, Fassnacht M, Vogeser M. No endogenous ouabain is detectable in human plasma by ultra-sensitive UPLC-MS/MS. Clin. Chim. Acta. 2014;431:87–92. doi: 10.1016/j.cca.2014.01.038. PubMed DOI
Ballard HE, Sytsma KJ, Kowal RR. Shrinking the violets: Phylogenetic relationships of infrageneric groups in Viola (Violaceae) based on internal transcribed spacer DNA sequences. Syst. Bot. 1999;23:439–458. doi: 10.2307/2419376. DOI
Rahman IU, et al. Contributions to the phytotherapies of digestive disorders: Traditional knowledge and cultural drivers of Manoor Valley, Northern Pakistan. J. Ethnopharmacol. 2016;192:30–52. doi: 10.1016/j.jep.2016.06.049. PubMed DOI
Bhatt VP, Negi GCS. Ethnomedicinal plant resources of Jaunsari tribe of Garhwal Himalaya, Uttaranchal. Indian J. Tradit. Knowl. 2006;5:331–335.
Verma G, Dua VK, Agarwal DD, Atul PK. Anti-malarial activity of Holarrhena antidysenterica and Viola canescens, plants traditionally used against malaria in the Garhwal region of north-west Himalaya. Malar. J. 2011;10:1–5. doi: 10.1186/1475-2875-10-20. PubMed DOI PMC
Chung IM, Kim MY, Park WH, Moon HI. Aldose reductase inhibitors from Viola hondoensis W. Becker et H Boss. Am. J. Chin. Med. 2008;36:799–803. doi: 10.1142/S0192415X08006247. PubMed DOI
Zhu Y, Zhao L, Wang X, Li P. Pharmacognostical and phytochemical studies of Viola tianschanica Maxim.—An Uyghur ethnomedicinal plant. J. Pharm. Pharmacogn. Res. 2016;4:95–106.
Wang H, Cong WL, Fu ZL, Chen DF, Wang Q. Anti-complementary constituents of Viola kunawarensis. Nat. Prod. Res. 2017;31:2312–2315. doi: 10.1080/14786419.2017.1297446. PubMed DOI
Feyzabadi Z, Ghorbani F, Vazani Y, Zarshenas MM. A critical review on phytochemistry, pharmacology of Viola odorata L. and related multipotential products in traditional Persian medicine. Phytother. Res. 2017;31:1669–1675. doi: 10.1002/ptr.5909. PubMed DOI
Cu JQ, Perineau F, Gaset A. Volatile components of violet leaves. Phytochemistry. 1992;31:571–573. doi: 10.1016/0031-9422(92)90040-W. DOI
Akhbari M, Batooli H, Kashi FJ. Composition of essential oil and biological activity of extracts of Viola odorata L. from central Iran. Nat. Prod. Res. 2012;26:802–809. doi: 10.1080/14786419.2011.558013. PubMed DOI
Parsley NC, et al. PepSAVI-MS reveals anticancer and antifungal cycloviolacins in Viola odorata. Phytochemistry. 2018;152:61–70. doi: 10.1016/j.phytochem.2018.04.014. PubMed DOI PMC
Narayani M, Chadha A, Srivastava S. Cyclotides from the indian medicinal plant Viola odorata (Banafsha): Identification and characterization. J. Nat. Prod. 2017;80:1972–1980. doi: 10.1021/acs.jnatprod.6b01004. PubMed DOI
Rizwan K, et al. A comprehensive review on chemical and pharmacological potential of Viola betonicifolia: A plant with multiple benefits. Molecules. 2019;24:3138. doi: 10.3390/molecules24173138. PubMed DOI PMC
Zubek S, Rola K, Szewczyk A, Majewska ML, Turnau K. Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi. Plant Soil. 2015;390:129–142. doi: 10.1007/s11104-015-2388-6. DOI
Welling MT, Liu L, Rose TJ, Waters DLE, Benkendorff K. Arbuscular mycorrhizal fungi: effects on plant terpenoid accumulation. Plant Biol. 2016;18:552–562. doi: 10.1111/plb.12408. PubMed DOI
Harrison MJ. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Biol. 1999;50(1):361–389. doi: 10.1146/annurev.arplant.50.1.361. PubMed DOI
Katoch M, Singh A, Singh G, Wazir P, Kumar R. Phylogeny, antimicrobial, antioxidant and enzyme-producing potential of fungal endophytes found in Viola odorata. Ann. Microbiol. 2017;67:529–540. doi: 10.1007/s13213-017-1283-1. DOI
Rauf A, et al. Proanthocyanidins: A comprehensive review. Biomed. Pharmacother. 2019;116:108999. doi: 10.1016/j.biopha.2019.108999. PubMed DOI
Rárová L, et al. Identification of narciclasine as an in vitro anti-inflammatory component of Cyrtanthus contractus by correlation-based metabolomics. J. Nat. Prod. 2019;82:1372–1376. doi: 10.1021/acs.jnatprod.8b00973. PubMed DOI
Enomoto H, Takahashi S, Takeda S, Hatta H. Distribution of flavan-3-ol species in ripe strawberry fruit revealed by matrix-assisted laser desorption/ionization-mass spectrometry imaging. Molecules. 2019;25:103. doi: 10.3390/molecules25010103. PubMed DOI PMC
Willer EA, et al. The vascular barrier-protecting hawthorn extract WS® 1442 raises endothelial calcium levels by inhibition of SERCA and activation of the IP3 pathway. J. Mol. Cell. Cardiol. 2012;53:567–577. doi: 10.1016/j.yjmcc.2012.07.002. PubMed DOI
Schwinger RHG, Pietsch M, Frank K, Brixius K. Crataegus special extract WS 1442 increases force of contraction in human myocardium cAMP-independently. J. Cardiovasc. Pharmacol. 2000;35:700–707. doi: 10.1097/00005344-200005000-00004. PubMed DOI
Koch E, Malek FA. Standardized extracts from hawthorn leaves and flowers in the treatment of cardiovascular disorders—preclinical and clinical studies. Planta Med. 2011;77:1123–1128. doi: 10.1055/s-0030-1270849. PubMed DOI
Yokomichi T, et al. Ursolic acid inhibits Na+/K+-ATPase activity and prevents TNF-α-induced gene expression by blocking amino acid transport and cellular protein synthesis. Biomolecules. 2011;1:32–47. doi: 10.3390/biom1010032. PubMed DOI PMC
Chen RJY, et al. Steroid-like compounds in Chinese medicines promote blood circulation via inhibition of Na+/K+-ATPase. Acta Pharmacol. Sin. 2010;31:696–702. doi: 10.1038/aps.2010.61. PubMed DOI PMC
Svedström U, et al. High-performance liquid chromatographic determination of oligomeric procyanidins from dimers up to the hexamer in hawthorn. J. Chromatogr. A. 2002;968:53–60. doi: 10.1016/S0021-9673(02)01000-2. PubMed DOI
Hellenbrand N, Sendker J, Lechtenberg M, Petereit F, Hensel A. Isolation and quantification of oligomeric and polymeric procyanidins in leaves and flowers of Hawthorn (Crataegus spp.) Fitoterapia. 2015;104:14–22. doi: 10.1016/j.fitote.2015.04.010. PubMed DOI
Svedström U, Vuorela H, Kostiainen R, Laakso I, Hiltunen R. Fractionation of polyphenols in hawthorn into polymeric procyanidins, phenolic acids and flavonoids prior to high-performance liquid chromatographic analysis. J. Chromatogr. A. 2006;1112:103–111. doi: 10.1016/j.chroma.2005.12.080. PubMed DOI
Cui T, et al. Quantification of the polyphenols and triterpene acids in Chinese hawthorn fruit by high-performance liquid chromatography. J. Agric. Food Chem. 2006;54:4574–4581. doi: 10.1021/jf060310m. PubMed DOI
Cui T, Nakamura K, Tian S, Kayahara H, Tian Y-L. Polyphenolic content and physiological activities of Chinese hawthorn extracts. Biosci. Biotechnol. Biochem. 2006;70:2948–2956. doi: 10.1271/bbb.60361. PubMed DOI
Yang B, Liu P. Composition and health effects of phenolic compounds in hawthorn (Crataegus spp.) of different origins. J. Sci. Food Agric. 2012;92:1578–1590. doi: 10.1002/jsfa.5671. PubMed DOI
Zumdick S, Petereit F, Luftmann H, Hensel A. Preparative isolation of oligomeric procyanidins from Hawthorn (Crataegus spp.) Pharmazie. 2009;64:286–288. PubMed
Souccar C, et al. Inhibition of gastric acid secretion by a standardized aqueous extract of Cecropia glaziovii Sneth and underlying mechanism. Phytomedicine. 2008;15:462–469. doi: 10.1016/j.phymed.2008.02.006. PubMed DOI
Mizukasi S, Tanabe Y, Noguchi M, Tamaki E. p-coumaroylputrescine, caffeoylputrescine and feruloylputrescine from callus tissue culture of Nicotiana tabacum. Phytochemistry. 1971;10:1347–1350. doi: 10.1016/S0031-9422(00)84339-3. DOI
Li Z, et al. Deep annotation of hydroxycinnamic acid amides in plants based on ultra-high-performance liquid chromatography-high-resolution mass spectrometry and its in silico database. Anal. Chem. 2018;90:14321–14330. doi: 10.1021/acs.analchem.8b03654. PubMed DOI
Ryabinin AA, Il’Ina EM. The alkaloid of Salsola subaphylla. Dok. Akad. Nauk SSSR. 1949;67:513.
Bardon C, et al. Biological denitrification inhibition (BDI) with procyanidins induces modification of root traits, growth and N status in Fallopia x bohemica. Soil Biol. Biochem. 2017;107:41–49. doi: 10.1016/j.soilbio.2016.12.009. DOI
Kraus TEC, Zasoski RJ, Dahlgren RA, Horwath WR, Preston CM. Carbon and nitrogen dynamics in a forest soil amended with purified tannins from different plant species. Soil Biol. Biochem. 2004;36:309–321. doi: 10.1016/j.soilbio.2003.10.006. DOI
Čechová P, Berka K, Kubala M. Ion Pathways in the Na+/K+-ATPase. J. Chem. Inf. Model. 2016;56:2434–2444. doi: 10.1021/acs.jcim.6b00353. PubMed DOI
Chebrolu S, Ma H, Artigas P. State-Dependent Movement between the First and Last External Loops of the Na/K Pump α Subunit. Biophys. J. 2014;106:582a. doi: 10.1016/j.bpj.2013.11.3227. DOI
Young VC, Artigas P. Displacement of the Na+/K+-pump’s transmembrane domains demonstrate conserved conformational changes in P-type 2 ATPases. Proc. Natl. Acad. Sci. U.S.A. 2021;118:e2019317118. doi: 10.1073/pnas.2019317118. PubMed DOI PMC
Kubala M, et al. Flavonolignans as a novel class of sodium pump inhibitors. Front. Physiol. 2016;7:115. doi: 10.3389/fphys.2016.00115. PubMed DOI PMC
Gu L, et al. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J. Nutr. 2004;134:613–617. doi: 10.1093/jn/134.3.613. PubMed DOI
Kosińska A, Andlauer W. Cocoa polyphenols are absorbed in Caco-2 cell model of intestinal epithelium. Food Chem. 2012;135:999–1005. doi: 10.1016/j.foodchem.2012.05.101. PubMed DOI
Mendoza-Wilson AM, et al. Absorption of dimers, trimers and tetramers of procyanidins present in apple skin by IEC-18 cell monolayers. J. Funct. Foods. 2016;27:386–391. doi: 10.1016/j.jff.2016.09.020. DOI
Deprez S, Mila I, Huneau JF, Tome D, Scalbert A. Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. Antioxid. Redox Signal. 2001;3:957–967. doi: 10.1089/152308601317203503. PubMed DOI
Serra A, et al. Distribution of procyanidins and their metabolites in rat plasma and tissues in relation to ingestion of procyanidin-enriched or procyanidin-rich cocoa creams. Eur. J. Nutr. 2013;52:1029–1038. doi: 10.1007/s00394-012-0409-2. PubMed DOI
Prasain JK, et al. Liquid chromatography tandem mass spectrometry identification of proanthocyanidins in rat plasma after oral administration of grape seed extract. Phytomedicine. 2009;16:233–243. doi: 10.1016/j.phymed.2008.08.006. PubMed DOI PMC
Tsang C, et al. The absorption, metabolism and excretion of flavan-3-ols and procyanidins following the ingestion of a grape seed extract by rats. Br. J. Nutr. 2005;94:170–181. doi: 10.1079/BJN20051480. PubMed DOI
Serra A, et al. Determination of procyanidins and their metabolites in plasma samples by improved liquid chromatography–tandem mass spectrometry. J. Chromatogr. B. 2009;877:1169–1176. doi: 10.1016/j.jchromb.2009.03.005. PubMed DOI
Serra A, et al. Bioavailability of procyanidin dimers and trimers and matrix food effects in in vitro and in vivo models. Br. J. Nutr. 2010;103:944–952. doi: 10.1017/S0007114509992741. PubMed DOI
Shoji T, et al. Apple procyanidin oligomers absorption in rats after oral administration: Analysis of procyanidins in plasma using the porter method and high-performance liquid chromatography/tandem mass spectrometry. J. Agric. Food Chem. 2006;54:884–892. doi: 10.1021/jf052260b. PubMed DOI
Ottaviani JI, Kwik-Uribe C, Keen CL, Schroeter H. Intake of dietary procyanidins does not contribute to the pool of circulating flavanols in humans. Am. J. Clin. Nutr. 2012;95:851–858. doi: 10.3945/ajcn.111.028340. PubMed DOI
Rios LY, et al. Cocoa procyanidins are stable during gastric transit in humans. Am. J. Clin. Nutr. 2002;76:1106–1110. doi: 10.1093/ajcn/76.5.1106. PubMed DOI
Holt RR, et al. Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am. J. Clin. Nutr. 2002;76:798–804. doi: 10.1093/ajcn/76.4.798. PubMed DOI
Sano A, et al. Procyanidin B1 is detected in human serum after intake of proanthocyanidin-rich grape seed extract. Biosci. Biotechnol. Biochem. 2003;67:1140–1143. doi: 10.1271/bbb.67.1140. PubMed DOI
Fedosova NU. Purification of Na, K-ATPase from pig kidney in Methods in Molecular Biology. New York: Humana Press Inc.; 2016. pp. 5–10. PubMed
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009;31:455–461. PubMed PMC
Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43:W443–W447. doi: 10.1093/nar/gkv315. PubMed DOI PMC