• This record comes from PubMed

Differential Effects of the Flavonolignans Silybin, Silychristin and 2,3-Dehydrosilybin on Mesocestoides vogae Larvae (Cestoda) under Hypoxic and Aerobic In Vitro Conditions

. 2018 Nov 16 ; 23 (11) : . [epub] 20181116

Language English Country Switzerland Media electronic

Document type Comparative Study, Journal Article

Grant support
02/0091/17 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
18-24 Bilateral mobility project SAV-AV ČR
18-00150S Grantová Agentura České Republiky
LTC18071 Ministerstvo Školství, Mládeže a Tělovýchovy
LO1509 Ministerstvo Školství, Mládeže a Tělovýchovy

Links

PubMed 30453549
PubMed Central PMC6278466
DOI 10.3390/molecules23112999
PII: molecules23112999
Knihovny.cz E-resources

Mesocestoides vogae larvae represent a suitable model for evaluating the larvicidal potential of various compounds. In this study we investigated the in vitro effects of three natural flavonolignans-silybin (SB), 2,3-dehydrosilybin (DHSB) and silychristin (SCH)-on M. vogae larvae at concentrations of 5 and 50 μM under aerobic and hypoxic conditions for 72 h. With both kinds of treatment, the viability and motility of larvae remained unchanged, metabolic activity, neutral red uptake and concentrations of neutral lipids were reduced, in contrast with a significantly elevated glucose content. Incubation conditions modified the effects of individual FLs depending on their concentration. Under both sets of conditions, SB and SCH suppressed metabolic activity, the concentration of glucose, lipids and partially motility more at 50 μM, but neutral red uptake was elevated. DHSB exerted larvicidal activity and affected motility and neutral lipid concentrations differently depending on the cultivation conditions, whereas it decreased glucose concentration. DHSB at the 50 μM concentration caused irreversible morphological alterations along with damage to the microvillus surface of larvae, which was accompanied by unregulated neutral red uptake. In conclusion, SB and SCH suppressed mitochondrial functions and energy stores, inducing a physiological misbalance, whereas DHSB exhibited a direct larvicidal effect due to damage to the tegument and complete disruption of larval physiology and metabolism.

See more in PubMed

Newman D.J., Cragg G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016;79:629–661. doi: 10.1021/acs.jnatprod.5b01055. PubMed DOI

Athanasiadou S., Githiori J., Kyriazakis I. Medicinal plants for helminth parasite control: Facts and fiction. Animal. 2007;1:1392–1400. doi: 10.1017/S1751731107000730. PubMed DOI

Hrčková G., Velebný S. Pharmacological Potential of Selected Natural Compounds in the Control of Parasitic Diseases. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2013. DOI

Irum S., Ahmed H., Mirza B., Donskow-Łysoniewska K., Muhammad A., Qayyum M., Simsek S. In vitro and in vivo anthelmintic activity of extracts from Artemisia parviflora and A. sieversiana. Helminthologia. 2017;54:218–224. doi: 10.1515/helm-2017-0028. DOI

Moazeni M., Saharkhiz M.J., Hosseini A.A. In vitro lethal effect of ajowan (Trachyspermum ammi L.) essential oil on hydatid cyst protoscoleces. Vet. Parasitol. 2012;187:203–208. doi: 10.1016/j.vetpar.2011.12.025. PubMed DOI

Pal P., Tandon V. Anthelmintic efficacy of Flemingia vestita (leguminoceae): Genistein-induced alterations in the activity of tegumental enzymes in the cestode, Raillietina echinobothrida. Parasitol. Int. 1998;47:233–243. doi: 10.1016/S1383-5769(98)00025-7. DOI

Tandon V., Pal P., Roy B., Rao H.S.P., Reddy K.S. In vitro anthelmintic activity of root-tuber extract of Flemingia vestita, an indigenous plant in Shillong, India. Parasitol. Int. 1997:492–498. doi: 10.1007/s004360050286. PubMed DOI

Naguleswaran A., Spicher M., Vonlaufen N., Ortega-Mora L.M., Torgerson P., Gottstein B., Hemphill A. In vitro metacestodicidal activities of genistein and other isoflavones against Echinococcus multilocularis and Echinococcus granulosus. Antimicrob. Agents Chemother. 2006;50:3770–3778. doi: 10.1128/AAC.00578-06. PubMed DOI PMC

Magalhães L.G., Machado C.B., Morais E.R., de Carvalho Moreira É.B., Soares C.S., da Silva S.H., Da Silva Filho A.A., Rodrigues V. In vitro schistosomicidal activity of curcumin against Schistosoma mansoni adult worms. Parasitol. Res. 2009;104:1197–1201. doi: 10.1007/s00436-008-1311-y. PubMed DOI

Gažák R., Walterová D., Křen V. Silybin and silymarin—New and emerging applications in medicine. Cur. Med. Chem. 2007;14:315–338. doi: 10.2174/092986707779941159. PubMed DOI

Esmaeil N., Anaraki S.B., Gharagozloo M., Moayedi B. Silymarin impacts on immune system as an immunomodulator: One key for many locks. Int. Immunopharmacol. 2017;50:194–201. doi: 10.1016/j.intimp.2017.06.030. PubMed DOI

Lawrence T. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009;1:a001651. doi: 10.1101/cshperspect.a001651. PubMed DOI PMC

Yoo H.G., Jung S.N., Hwang Y.S., Park J.S., Kim M.H., Jeong M., Ahn S.J., Ahn B.W., Shin B.A., Park R.K. Involvement of NF-κB and caspases in silibinin-induced apoptosis of endothelial cells. Int. J. Mol. Med. 2004;13:81–86. doi: 10.3892/ijmm.13.1.81. PubMed DOI

Biedermann D., Buchta M., Holečková V., Sedlák D., Valentová K., Cvačka J., Bednárová L., Křenková A., Kuzma M., Škuta C., et al. Silychristin: Skeletal alterations and biological activities. J. Nat. Prod. 2016;79:3086–3092. doi: 10.1021/acs.jnatprod.6b00750. PubMed DOI

Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojović M., Popovič-Bijelič A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI

Roubalová L., Dinková-Kostová A.T., Biedermann D., Křen V., Ulrichová J., Vrba J. Flavonolignan 2,3-dehydrosilydianin activates NRF2 and upregulates NAD(P)H: Quinone oxidoreductase 1 in Hepa1c1c7 cells. Fitoterapia. 2017;119:115–120. doi: 10.1016/j.fitote.2017.04.012. PubMed DOI PMC

El-Lakkany N.M., Hammam O.A., El-Maadawy W.H., Badawy A.A., Ain-Shoka A.A., Ebeid F.A. Anti-inflammatory/anti-fibrotic effects of the hepatoprotective silymarin and the schistosomicide praziquantel against Schistosoma mansoni-induced liver fibrosis. Parasit. Vectors. 2012;5:9. doi: 10.1186/1756-3305-5-9. PubMed DOI PMC

Velebný S., Hrčková G., Kogan G. Impact of treatment with praziquantel, silymarin and/or β-glucan on pathophysiological markers of liver damage and fibrosis in mice infected with Mesocestoides vogae (cestoda) tetrathyridia. J. Helminthol. 2008;82:211–219. doi: 10.1017/S0022149X08960776. PubMed DOI

Velebný S., Hrčková G., Königová A. Reduction of oxidative stress and liver injury following silymarin and praziquantel treatment in mice with Mesocestoides vogae (cestoda) infection. Parasitol. Int. 2010;59:524–531. doi: 10.1016/j.parint.2010.06.012. PubMed DOI

Köhler P., Hanselmann K. Anaerobic and aerobic energy metabolism in the larvae (tetrathyridia) of Mesocestoides corti. Exp. Parasitol. 1974;36:178–188. doi: 10.1016/0014-4894(74)90057-5. PubMed DOI

Hrckova G., Velebny S. Effects of free and liposomized praziquantel on worm burden and antibody-response in mice infected with Mesocestoides corti tetrathyridia. J. Helminthol. 1995;69:213–221. doi: 10.1017/S0022149X00014164. PubMed DOI

Xiao W., Shinohara M., Komori K., Sakai Y., Matsui H., Osada T. The importance of physiological oxygen concentrations in the sandwich cultures of rat hepatocytes on gas-permeable membranes. Biotechnol. Prog. 2014;30:1401–1410. doi: 10.1002/btpr.1954. PubMed DOI

Subczynski W.K., Lukiewicz S., Hyde J.S. Murine in vivo L-band ESR spin-label oximetry with a loop-gap resonator. Magn. Reson. Med. 1986;3:747–754. doi: 10.1002/mrm.1910030510. PubMed DOI

Antal P., Sipka S., Suranyi P., Csipo I., Seres T., Marodi L., Szegedi G. Flow cytometric assay of phagocytic-activity of human neutrophils and monocytes in whole-blood by neutral red uptake. Ann. Hematol. 1995;70:259–265. doi: 10.1007/BF01784045. PubMed DOI

Bryant C., Behm C.A. Biochemical Adaptation in Parasites. Chapman and Hall Ltd.; London, UK: 1989. DOI

Frayha G.J., Smyth J.D., Baker J.R., Muller R. Advances in Parasitology. Volume 22. Academic Press; Cambridge, MA, USA: 1983. Lipid metabolism in parasitic helminths; pp. 309–387. PubMed DOI

Etges F.J. The proliferative tetrathyridium of Mesocestoides vogae sp. N.(cestoda) J. Helminthol. Soc. Wash. 1991;58:181–185.

Eleni C., Scaramozzino P., Busi M., Ingrosso S., D’Amelio S., De Liberato C. Proliferative peritoneal and pleural cestodiasis in a cat caused by metacestodes of Mesocestoides sp. anatomohistopathological findings and genetic identification. Parasite. 2007;14:71–76. doi: 10.1051/parasite/2007141071. PubMed DOI

Jabbar A., Papini R., Ferrini N., Gasser R.B. Use of a molecular approach for the definitive diagnosis of proliferative larval mesocestoidiasis in a cat. Infect. Genet. Evol. 2012;12:1377–1380. doi: 10.1016/j.meegid.2012.04.014. PubMed DOI

Wirtherle N., Wiemann A., Ottenjann M., Linzmann H., van der Grinten E., Kohn B., Gruber A.D., Clausen P.H. First case of canine peritoneal larval cestodosis caused by Mesocestoides lineatus in Germany. Parasitol. Int. 2007;56:317–320. doi: 10.1016/j.parint.2007.06.006. PubMed DOI

Vendelova E., Hrčková G., Lutz M.B., Brehm K., Nono J.K. In vitro culture of Mesocestoides corti metacestodes and isolation of immunomodulatory excretory-secretory products. Parasite Immunol. 2016;38:403–413. doi: 10.1111/pim.12327. PubMed DOI

Smyth J.D., McManus D.P. The Physiology and Biochemistry of Cestodes. Cambridge University Press; Cambridge, UK: 2007. DOI

Sakai C., Tomitsuka E., Esumi H., Harada S., Kita K. Mitochondrial fumarate reductase as a target of chemotherapy: From parasites to cancer cells. Biochim. Biophys. Acta Gen. Subj. 2012;1820:643–651. doi: 10.1016/j.bbagen.2011.12.013. PubMed DOI

Hrčková G., Velebný S., Halton D.W., Day T.A., Maule A.G. Pharmacological characterisation of neuropeptide F (NPF)-induced effects on the motility of Mesocestoides corti (syn. Mesocestoides vogae) larvae. Int. J. Parasitol. 2004;34:83–93. doi: 10.1016/j.ijpara.2003.10.007. PubMed DOI

Terenina N.B., Reuter M., Gustafsson M.K.S. An experimental, NADPH-diaphorase histochemical and immunocytochemical study of Mesocestoides vogae tetrathyridia. Int. J. Parasitol. 1999;29:787–793. doi: 10.1016/S0020-7519(99)00027-2. PubMed DOI

Halton D.W. Nutritional adaptations to parasitism within the platyhelminthes. Int. J. Parasitol. 1997;27:693–704. doi: 10.1016/S0020-7519(97)00011-8. PubMed DOI

Hess E. Ultrastructural-study of the tetrathyridium of Mesocestoides corti Hoeppli, 1925: Tegument and parenchyma. Parasitol. Res. 1980;61:135–159. doi: 10.1007/bf00925460. PubMed DOI

Matsumoto J., Sakamoto K., Shinjyo N., Kido Y., Yamamoto N., Yagi K., Miyoshi H., Nonaka N., Katakura K., Kita K., et al. Anaerobic NADH-fumarate reductase system is predominant in the respiratory chain of Echinococcus multilocularis, providing a novel target for the chemotherapy of alveolar echinococcosis. Antimicrob. Agents Chemother. 2008;52:164–170. doi: 10.1128/AAC.00378-07. PubMed DOI PMC

Valentová K., Purchartová K., Rydlová L., Roubalová L., Biedermann D., Petrásková L., Křenková A., Pelantová H., Holečková-Moravcová V., Tesařová E., et al. Sulfated metabolites of flavonolignans and 2,3-dehydroflavonolignans: Preparation and properties. Int. J. Mol. Sci. 2018;19:2349. doi: 10.3390/ijms19082349. PubMed DOI PMC

Maitrejean M., Comte G., Barron D., El Kirat K., Conseil G.L., Di Pietro A. The flavanolignan silybin and its hemisynthetic derivatives, a novel series of potential modulators of P-glycoprotein. Bioorg. Med. Chem. Lett. 2000;10:157–160. doi: 10.1016/S0960-894X(99)00636-8. PubMed DOI

Kubala M., Čechová P., Geletičová J., Biler M., Štenclová T., Trouillas P., Biedermann D. Flavonolignans as a novel class of sodium pump inhibitors. Front. Physiol. 2016;7:115. doi: 10.3389/fphys.2016.00115. PubMed DOI PMC

Huber A., Thongphasuk P., Erben G., Lehmann W.-D., Tuma S., Stremmel W., Chamulitrat W. Significantly greater antioxidant anticancer activities of 2,3-dehydrosilybin than silybin. Biochim. Biophys. Acta Gen. Subj. 2008;1780:837–847. doi: 10.1016/j.bbagen.2007.12.012. PubMed DOI

Płytycz B., Rózanowska M., Seljelid R. Quantification of neutral red pinocytosis by small numbers of adherent cells: Comparative studies. Folia Biol. 1992;40:3–9. PubMed

Maggiore M., Elissondo M.C. In vitro cestocidal activity of thymol on Mesocestoides corti tetrathyridia and adult worms. Interdiscip. Perspect. Infect. Dis. 2014;2014:268135. doi: 10.1155/2014/268135. PubMed DOI PMC

Shuhua X., Hotez P.J., Tanner M. Artemether, an effective new agent for chemoprophylaxis against shistosomiasis in china: Its in vivo effect on the biochemical metabolism of the asian schistosome. Southeast Asian J. Trop. Med. Public Health. 2000;31:724–732. PubMed

Tandon V., Das B., Saha N. Anthelmintic efficacy of Flemingia vestita (fabaceae): Effect of genistein on glycogen metabolism in the cestode, Raillietina echinobothrida. Parasitol. Int. 2003;52:179–183. doi: 10.1016/S1383-5769(03)00006-0. PubMed DOI

Lienhard G.E., Slot J.W., James D.E., Mueckler M.M. How cells absorb glucose. Sci. Am. 1992;266:86–91. doi: 10.1038/scientificamerican0192-86. PubMed DOI

Zhan T., Digel M., Küch E.-M., Stremmel W., Füllekrug J. Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins. J. Cell. Biochem. 2011;112:849–859. doi: 10.1002/jcb.22984. PubMed DOI

Detaille D., Sanchez C., Sanz N., Lopez-Novoa J.M., Leverve X., El-Mir M.Y. Interrelation between the inhibition of glycolytic flux by silibinin and the lowering of mitochondrial ROS production in perifused rat hepatocytes. Life Sci. 2008;82:1070–1076. doi: 10.1016/j.lfs.2008.03.007. PubMed DOI

Mills G.C., Coley S.F., Williams J. Lipid and protein composition of the surface tegument from larvae of Taenia taeniaeformis. J. Parasitol. 1984:197–207. doi: 10.2307/3281862. PubMed DOI

Alvite G., Esteves A. Lipid binding proteins from parasitic platyhelminthes. Front. Physiol. 2012;3 doi: 10.3389/fphys.2012.00363. PubMed DOI PMC

Huang S.C.-C., Freitas T.C., Amiel E., Everts B., Pearce E.L., Lok J.B., Pearce E.J. Fatty acid oxidation is essential for egg production by the parasitic flatworm Schistosoma mansoni. PLoS Pathog. 2012;8:e1002996. doi: 10.1371/journal.ppat.1002996. PubMed DOI PMC

Křenek K., Marhol P., Peikerová Ž., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by sephadex LH-20 gel. Food Res. Int. 2016;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI

Greenspan P., Mayer E.P., Fowler S.D. Nile red: A selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 1985;100:965–973. doi: 10.1083/jcb.100.3.965. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...