Differential Effects of the Flavonolignans Silybin, Silychristin and 2,3-Dehydrosilybin on Mesocestoides vogae Larvae (Cestoda) under Hypoxic and Aerobic In Vitro Conditions
Language English Country Switzerland Media electronic
Document type Comparative Study, Journal Article
Grant support
02/0091/17
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
18-24
Bilateral mobility project SAV-AV ČR
18-00150S
Grantová Agentura České Republiky
LTC18071
Ministerstvo Školství, Mládeže a Tělovýchovy
LO1509
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
30453549
PubMed Central
PMC6278466
DOI
10.3390/molecules23112999
PII: molecules23112999
Knihovny.cz E-resources
- Keywords
- 2,3-dehydrosilybin, Mesocestoides vogae larvae, aerobic and hypoxic cultivation, silybin, silychristin,
- MeSH
- Antioxidants pharmacology MeSH
- Hypoxia * MeSH
- Larva drug effects physiology MeSH
- Mesocestoides drug effects physiology MeSH
- Protective Agents pharmacology MeSH
- Silybin pharmacology MeSH
- Silymarin pharmacology MeSH
- In Vitro Techniques MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Names of Substances
- Antioxidants MeSH
- dehydrosilybin MeSH Browser
- Protective Agents MeSH
- Silybin MeSH
- silychristin MeSH Browser
- Silymarin MeSH
Mesocestoides vogae larvae represent a suitable model for evaluating the larvicidal potential of various compounds. In this study we investigated the in vitro effects of three natural flavonolignans-silybin (SB), 2,3-dehydrosilybin (DHSB) and silychristin (SCH)-on M. vogae larvae at concentrations of 5 and 50 μM under aerobic and hypoxic conditions for 72 h. With both kinds of treatment, the viability and motility of larvae remained unchanged, metabolic activity, neutral red uptake and concentrations of neutral lipids were reduced, in contrast with a significantly elevated glucose content. Incubation conditions modified the effects of individual FLs depending on their concentration. Under both sets of conditions, SB and SCH suppressed metabolic activity, the concentration of glucose, lipids and partially motility more at 50 μM, but neutral red uptake was elevated. DHSB exerted larvicidal activity and affected motility and neutral lipid concentrations differently depending on the cultivation conditions, whereas it decreased glucose concentration. DHSB at the 50 μM concentration caused irreversible morphological alterations along with damage to the microvillus surface of larvae, which was accompanied by unregulated neutral red uptake. In conclusion, SB and SCH suppressed mitochondrial functions and energy stores, inducing a physiological misbalance, whereas DHSB exhibited a direct larvicidal effect due to damage to the tegument and complete disruption of larval physiology and metabolism.
See more in PubMed
Newman D.J., Cragg G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016;79:629–661. doi: 10.1021/acs.jnatprod.5b01055. PubMed DOI
Athanasiadou S., Githiori J., Kyriazakis I. Medicinal plants for helminth parasite control: Facts and fiction. Animal. 2007;1:1392–1400. doi: 10.1017/S1751731107000730. PubMed DOI
Hrčková G., Velebný S. Pharmacological Potential of Selected Natural Compounds in the Control of Parasitic Diseases. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2013. DOI
Irum S., Ahmed H., Mirza B., Donskow-Łysoniewska K., Muhammad A., Qayyum M., Simsek S. In vitro and in vivo anthelmintic activity of extracts from Artemisia parviflora and A. sieversiana. Helminthologia. 2017;54:218–224. doi: 10.1515/helm-2017-0028. DOI
Moazeni M., Saharkhiz M.J., Hosseini A.A. In vitro lethal effect of ajowan (Trachyspermum ammi L.) essential oil on hydatid cyst protoscoleces. Vet. Parasitol. 2012;187:203–208. doi: 10.1016/j.vetpar.2011.12.025. PubMed DOI
Pal P., Tandon V. Anthelmintic efficacy of Flemingia vestita (leguminoceae): Genistein-induced alterations in the activity of tegumental enzymes in the cestode, Raillietina echinobothrida. Parasitol. Int. 1998;47:233–243. doi: 10.1016/S1383-5769(98)00025-7. DOI
Tandon V., Pal P., Roy B., Rao H.S.P., Reddy K.S. In vitro anthelmintic activity of root-tuber extract of Flemingia vestita, an indigenous plant in Shillong, India. Parasitol. Int. 1997:492–498. doi: 10.1007/s004360050286. PubMed DOI
Naguleswaran A., Spicher M., Vonlaufen N., Ortega-Mora L.M., Torgerson P., Gottstein B., Hemphill A. In vitro metacestodicidal activities of genistein and other isoflavones against Echinococcus multilocularis and Echinococcus granulosus. Antimicrob. Agents Chemother. 2006;50:3770–3778. doi: 10.1128/AAC.00578-06. PubMed DOI PMC
Magalhães L.G., Machado C.B., Morais E.R., de Carvalho Moreira É.B., Soares C.S., da Silva S.H., Da Silva Filho A.A., Rodrigues V. In vitro schistosomicidal activity of curcumin against Schistosoma mansoni adult worms. Parasitol. Res. 2009;104:1197–1201. doi: 10.1007/s00436-008-1311-y. PubMed DOI
Gažák R., Walterová D., Křen V. Silybin and silymarin—New and emerging applications in medicine. Cur. Med. Chem. 2007;14:315–338. doi: 10.2174/092986707779941159. PubMed DOI
Esmaeil N., Anaraki S.B., Gharagozloo M., Moayedi B. Silymarin impacts on immune system as an immunomodulator: One key for many locks. Int. Immunopharmacol. 2017;50:194–201. doi: 10.1016/j.intimp.2017.06.030. PubMed DOI
Lawrence T. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009;1:a001651. doi: 10.1101/cshperspect.a001651. PubMed DOI PMC
Yoo H.G., Jung S.N., Hwang Y.S., Park J.S., Kim M.H., Jeong M., Ahn S.J., Ahn B.W., Shin B.A., Park R.K. Involvement of NF-κB and caspases in silibinin-induced apoptosis of endothelial cells. Int. J. Mol. Med. 2004;13:81–86. doi: 10.3892/ijmm.13.1.81. PubMed DOI
Biedermann D., Buchta M., Holečková V., Sedlák D., Valentová K., Cvačka J., Bednárová L., Křenková A., Kuzma M., Škuta C., et al. Silychristin: Skeletal alterations and biological activities. J. Nat. Prod. 2016;79:3086–3092. doi: 10.1021/acs.jnatprod.6b00750. PubMed DOI
Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojović M., Popovič-Bijelič A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI
Roubalová L., Dinková-Kostová A.T., Biedermann D., Křen V., Ulrichová J., Vrba J. Flavonolignan 2,3-dehydrosilydianin activates NRF2 and upregulates NAD(P)H: Quinone oxidoreductase 1 in Hepa1c1c7 cells. Fitoterapia. 2017;119:115–120. doi: 10.1016/j.fitote.2017.04.012. PubMed DOI PMC
El-Lakkany N.M., Hammam O.A., El-Maadawy W.H., Badawy A.A., Ain-Shoka A.A., Ebeid F.A. Anti-inflammatory/anti-fibrotic effects of the hepatoprotective silymarin and the schistosomicide praziquantel against Schistosoma mansoni-induced liver fibrosis. Parasit. Vectors. 2012;5:9. doi: 10.1186/1756-3305-5-9. PubMed DOI PMC
Velebný S., Hrčková G., Kogan G. Impact of treatment with praziquantel, silymarin and/or β-glucan on pathophysiological markers of liver damage and fibrosis in mice infected with Mesocestoides vogae (cestoda) tetrathyridia. J. Helminthol. 2008;82:211–219. doi: 10.1017/S0022149X08960776. PubMed DOI
Velebný S., Hrčková G., Königová A. Reduction of oxidative stress and liver injury following silymarin and praziquantel treatment in mice with Mesocestoides vogae (cestoda) infection. Parasitol. Int. 2010;59:524–531. doi: 10.1016/j.parint.2010.06.012. PubMed DOI
Köhler P., Hanselmann K. Anaerobic and aerobic energy metabolism in the larvae (tetrathyridia) of Mesocestoides corti. Exp. Parasitol. 1974;36:178–188. doi: 10.1016/0014-4894(74)90057-5. PubMed DOI
Hrckova G., Velebny S. Effects of free and liposomized praziquantel on worm burden and antibody-response in mice infected with Mesocestoides corti tetrathyridia. J. Helminthol. 1995;69:213–221. doi: 10.1017/S0022149X00014164. PubMed DOI
Xiao W., Shinohara M., Komori K., Sakai Y., Matsui H., Osada T. The importance of physiological oxygen concentrations in the sandwich cultures of rat hepatocytes on gas-permeable membranes. Biotechnol. Prog. 2014;30:1401–1410. doi: 10.1002/btpr.1954. PubMed DOI
Subczynski W.K., Lukiewicz S., Hyde J.S. Murine in vivo L-band ESR spin-label oximetry with a loop-gap resonator. Magn. Reson. Med. 1986;3:747–754. doi: 10.1002/mrm.1910030510. PubMed DOI
Antal P., Sipka S., Suranyi P., Csipo I., Seres T., Marodi L., Szegedi G. Flow cytometric assay of phagocytic-activity of human neutrophils and monocytes in whole-blood by neutral red uptake. Ann. Hematol. 1995;70:259–265. doi: 10.1007/BF01784045. PubMed DOI
Bryant C., Behm C.A. Biochemical Adaptation in Parasites. Chapman and Hall Ltd.; London, UK: 1989. DOI
Frayha G.J., Smyth J.D., Baker J.R., Muller R. Advances in Parasitology. Volume 22. Academic Press; Cambridge, MA, USA: 1983. Lipid metabolism in parasitic helminths; pp. 309–387. PubMed DOI
Etges F.J. The proliferative tetrathyridium of Mesocestoides vogae sp. N.(cestoda) J. Helminthol. Soc. Wash. 1991;58:181–185.
Eleni C., Scaramozzino P., Busi M., Ingrosso S., D’Amelio S., De Liberato C. Proliferative peritoneal and pleural cestodiasis in a cat caused by metacestodes of Mesocestoides sp. anatomohistopathological findings and genetic identification. Parasite. 2007;14:71–76. doi: 10.1051/parasite/2007141071. PubMed DOI
Jabbar A., Papini R., Ferrini N., Gasser R.B. Use of a molecular approach for the definitive diagnosis of proliferative larval mesocestoidiasis in a cat. Infect. Genet. Evol. 2012;12:1377–1380. doi: 10.1016/j.meegid.2012.04.014. PubMed DOI
Wirtherle N., Wiemann A., Ottenjann M., Linzmann H., van der Grinten E., Kohn B., Gruber A.D., Clausen P.H. First case of canine peritoneal larval cestodosis caused by Mesocestoides lineatus in Germany. Parasitol. Int. 2007;56:317–320. doi: 10.1016/j.parint.2007.06.006. PubMed DOI
Vendelova E., Hrčková G., Lutz M.B., Brehm K., Nono J.K. In vitro culture of Mesocestoides corti metacestodes and isolation of immunomodulatory excretory-secretory products. Parasite Immunol. 2016;38:403–413. doi: 10.1111/pim.12327. PubMed DOI
Smyth J.D., McManus D.P. The Physiology and Biochemistry of Cestodes. Cambridge University Press; Cambridge, UK: 2007. DOI
Sakai C., Tomitsuka E., Esumi H., Harada S., Kita K. Mitochondrial fumarate reductase as a target of chemotherapy: From parasites to cancer cells. Biochim. Biophys. Acta Gen. Subj. 2012;1820:643–651. doi: 10.1016/j.bbagen.2011.12.013. PubMed DOI
Hrčková G., Velebný S., Halton D.W., Day T.A., Maule A.G. Pharmacological characterisation of neuropeptide F (NPF)-induced effects on the motility of Mesocestoides corti (syn. Mesocestoides vogae) larvae. Int. J. Parasitol. 2004;34:83–93. doi: 10.1016/j.ijpara.2003.10.007. PubMed DOI
Terenina N.B., Reuter M., Gustafsson M.K.S. An experimental, NADPH-diaphorase histochemical and immunocytochemical study of Mesocestoides vogae tetrathyridia. Int. J. Parasitol. 1999;29:787–793. doi: 10.1016/S0020-7519(99)00027-2. PubMed DOI
Halton D.W. Nutritional adaptations to parasitism within the platyhelminthes. Int. J. Parasitol. 1997;27:693–704. doi: 10.1016/S0020-7519(97)00011-8. PubMed DOI
Hess E. Ultrastructural-study of the tetrathyridium of Mesocestoides corti Hoeppli, 1925: Tegument and parenchyma. Parasitol. Res. 1980;61:135–159. doi: 10.1007/bf00925460. PubMed DOI
Matsumoto J., Sakamoto K., Shinjyo N., Kido Y., Yamamoto N., Yagi K., Miyoshi H., Nonaka N., Katakura K., Kita K., et al. Anaerobic NADH-fumarate reductase system is predominant in the respiratory chain of Echinococcus multilocularis, providing a novel target for the chemotherapy of alveolar echinococcosis. Antimicrob. Agents Chemother. 2008;52:164–170. doi: 10.1128/AAC.00378-07. PubMed DOI PMC
Valentová K., Purchartová K., Rydlová L., Roubalová L., Biedermann D., Petrásková L., Křenková A., Pelantová H., Holečková-Moravcová V., Tesařová E., et al. Sulfated metabolites of flavonolignans and 2,3-dehydroflavonolignans: Preparation and properties. Int. J. Mol. Sci. 2018;19:2349. doi: 10.3390/ijms19082349. PubMed DOI PMC
Maitrejean M., Comte G., Barron D., El Kirat K., Conseil G.L., Di Pietro A. The flavanolignan silybin and its hemisynthetic derivatives, a novel series of potential modulators of P-glycoprotein. Bioorg. Med. Chem. Lett. 2000;10:157–160. doi: 10.1016/S0960-894X(99)00636-8. PubMed DOI
Kubala M., Čechová P., Geletičová J., Biler M., Štenclová T., Trouillas P., Biedermann D. Flavonolignans as a novel class of sodium pump inhibitors. Front. Physiol. 2016;7:115. doi: 10.3389/fphys.2016.00115. PubMed DOI PMC
Huber A., Thongphasuk P., Erben G., Lehmann W.-D., Tuma S., Stremmel W., Chamulitrat W. Significantly greater antioxidant anticancer activities of 2,3-dehydrosilybin than silybin. Biochim. Biophys. Acta Gen. Subj. 2008;1780:837–847. doi: 10.1016/j.bbagen.2007.12.012. PubMed DOI
Płytycz B., Rózanowska M., Seljelid R. Quantification of neutral red pinocytosis by small numbers of adherent cells: Comparative studies. Folia Biol. 1992;40:3–9. PubMed
Maggiore M., Elissondo M.C. In vitro cestocidal activity of thymol on Mesocestoides corti tetrathyridia and adult worms. Interdiscip. Perspect. Infect. Dis. 2014;2014:268135. doi: 10.1155/2014/268135. PubMed DOI PMC
Shuhua X., Hotez P.J., Tanner M. Artemether, an effective new agent for chemoprophylaxis against shistosomiasis in china: Its in vivo effect on the biochemical metabolism of the asian schistosome. Southeast Asian J. Trop. Med. Public Health. 2000;31:724–732. PubMed
Tandon V., Das B., Saha N. Anthelmintic efficacy of Flemingia vestita (fabaceae): Effect of genistein on glycogen metabolism in the cestode, Raillietina echinobothrida. Parasitol. Int. 2003;52:179–183. doi: 10.1016/S1383-5769(03)00006-0. PubMed DOI
Lienhard G.E., Slot J.W., James D.E., Mueckler M.M. How cells absorb glucose. Sci. Am. 1992;266:86–91. doi: 10.1038/scientificamerican0192-86. PubMed DOI
Zhan T., Digel M., Küch E.-M., Stremmel W., Füllekrug J. Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins. J. Cell. Biochem. 2011;112:849–859. doi: 10.1002/jcb.22984. PubMed DOI
Detaille D., Sanchez C., Sanz N., Lopez-Novoa J.M., Leverve X., El-Mir M.Y. Interrelation between the inhibition of glycolytic flux by silibinin and the lowering of mitochondrial ROS production in perifused rat hepatocytes. Life Sci. 2008;82:1070–1076. doi: 10.1016/j.lfs.2008.03.007. PubMed DOI
Mills G.C., Coley S.F., Williams J. Lipid and protein composition of the surface tegument from larvae of Taenia taeniaeformis. J. Parasitol. 1984:197–207. doi: 10.2307/3281862. PubMed DOI
Alvite G., Esteves A. Lipid binding proteins from parasitic platyhelminthes. Front. Physiol. 2012;3 doi: 10.3389/fphys.2012.00363. PubMed DOI PMC
Huang S.C.-C., Freitas T.C., Amiel E., Everts B., Pearce E.L., Lok J.B., Pearce E.J. Fatty acid oxidation is essential for egg production by the parasitic flatworm Schistosoma mansoni. PLoS Pathog. 2012;8:e1002996. doi: 10.1371/journal.ppat.1002996. PubMed DOI PMC
Křenek K., Marhol P., Peikerová Ž., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by sephadex LH-20 gel. Food Res. Int. 2016;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI
Greenspan P., Mayer E.P., Fowler S.D. Nile red: A selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 1985;100:965–973. doi: 10.1083/jcb.100.3.965. PubMed DOI PMC