Flavonolignan 2,3-dehydrosilydianin activates Nrf2 and upregulates NAD(P)H:quinone oxidoreductase 1 in Hepa1c1c7 cells

. 2017 Jun ; 119 () : 115-120. [epub] 20170424

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28450126

Grantová podpora
18644 Cancer Research UK - United Kingdom

Odkazy

PubMed 28450126
PubMed Central PMC5476199
DOI 10.1016/j.fitote.2017.04.012
PII: S0367-326X(17)30302-7
Knihovny.cz E-zdroje

Silybum marianum (milk thistle) is a medicinal plant used for the treatment of various liver disorders. This study examined whether the main flavonolignans from S. marianum (i.e. silybin, silychristin, silydianin) and their 2,3-dehydro derivatives (i.e. 2,3-dehydrosilybin, 2,3-dehydrosilychristin, 2,3-dehydrosilydianin) activate the Nrf2 pathway, which regulates the expression of genes encoding many cytoprotective enzymes, including NAD(P)H:quinone oxidoreductase 1 (NQO1). After 48h of exposure, 2,3-dehydrosilydianin at concentrations of 25μM and higher significantly elevated the activity of NQO1 in murine hepatoma Hepa1c1c7 cells. In contrast, other tested compounds at non-cytotoxic concentrations had a mild or negligible effect on the NQO1 activity. Using a luciferase reporter assay, 2,3-dehydrosilydianin was found to significantly activate transcription via the antioxidant response element in stably transfected human AREc32 reporter cells. Moreover, 2,3-dehydrosilydianin caused the accumulation of Nrf2 and significantly induced the expression of the Nqo1 gene at both the mRNA and protein levels in Hepa1c1c7 cells. We found that 2,3-dehydrosilydianin also increased to some extent the expression of other Nrf2 target genes, namely of the heme oxygenase-1 gene (Hmox1) and the glutamate-cysteine ligase modifier subunit gene (Gclm). We conclude that 2,3-dehydrosilydianin activates Nrf2 and induces Nrf2-mediated gene expression in Hepa1c1c7 cells.

Zobrazit více v PubMed

Begum S.A., Sahai M., Ray A.B. Non-conventional lignans: coumarinolignans, flavonolignans, and stilbenolignans. Prog. Chem. Org. Nat. Prod. 2010;93:1–70. PubMed

Biedermann D., Vavrikova E., Cvak L., Kren V. Chemistry of silybin. Nat. Prod. Rep. 2014;31:1138–1157. PubMed

Chambers C.S., Valentova K., Kren V. “Non-taxifolin” derived flavonolignans: phytochemistry and biology. Curr. Pharm. Des. 2015;21:5489–5500. PubMed

Abenavoli L., Capasso R., Milic N., Capasso F. Milk thistle in liver diseases: past, present, future. Phytother. Res. 2010;24:1423–1432. PubMed

Federico A., Dallio M., Loguercio C. Silymarin/silybin and chronic liver disease: a marriage of many years. Molecules. 2017;22:191. PubMed PMC

Feher P., Ujhelyi Z., Varadi J., Fenyvesi F., Roka E., Juhasz B., Varga B., Bombicz M., Priksz D., Bacskay I., Vecsernyes M. Efficacy of pre- and post-treatment by topical formulations containing dissolved and suspended Silybum marianum against UVB-induced oxidative stress in guinea pig and on HaCaT keratinocytes. Molecules. 2016;21:1269. PubMed PMC

Gazak R., Walterova D., Kren V. Silybin and silymarin - new and emerging applications in medicine. Curr. Med. Chem. 2007;14:315–338. PubMed

Surai P.F. Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants. 2015;4:204–247. PubMed PMC

Prochazkova D., Bousova I., Wilhelmova N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82:513–523. PubMed

Biedermann D., Buchta M., Holeckova V., Sedlak D., Valentova K., Cvacka J., Bednarova L., Krenkova A., Kuzma M., Skuta C., Peikerova Z., Bartunek P., Kren V. Silychristin: skeletal alterations and biological activities. J. Nat. Prod. 2016;79:3086–3092. PubMed

Pyszkova M., Biler M., Biedermann D., Valentova K., Kuzma M., Vrba J., Ulrichova J., Sokolova R., Mojovic M., Popovic-Bijelic A., Kubala M., Trouillas P., Kren V., Vacek J. Flavonolignan 2,3-dehydroderivatives: preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. PubMed

Trouillas P., Marsal P., Svobodova A., Vostalova J., Gazak R., Hrbac J., Sedmera P., Kren V., Lazzaroni R., Duroux J.L., Walterova D. Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: a joint experimental and theoretical study. J. Phys. Chem. A. 2008;112:1054–1063. PubMed

Borsari M., Gabbi C., Ghelfi F., Grandi R., Saladini M., Severi S., Borella F. Silybin, a new iron-chelating agent. J. Inorg. Biochem. 2001;85:123–129. PubMed

Varga Z., Seres I., Nagy E., Ujhelyi L., Balla G., Balla J., Antus S. Structure prerequisite for antioxidant activity of silybin in different biochemical systems in vitro. Phytomedicine. 2006;13:85–93. PubMed

Bonifaz V., Shan Y., Lambrecht R.W., Donohue S.E., Moschenross D., Bonkovsky H.L. Effects of silymarin on hepatitis C virus and haem oxygenase-1 gene expression in human hepatoma cells. Liver Int. 2009;29:366–373. PubMed PMC

Hayes J.D., Dinkova-Kostova A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 2014;39:199–218. PubMed

Zhao J., Agarwal R. Tissue distribution of silibinin, the major active constituent of silymarin, in mice and its association with enhancement of phase II enzymes: implications in cancer chemoprevention. Carcinogenesis. 1999;20:2101–2108. PubMed

Krenek K., Marhol P., Peikerova Z., Kren V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120.

Gazak R., Svobodova A., Psotova J., Sedmera P., Prikrylova V., Walterova D., Kren V. Oxidised derivatives of silybin and their antiradical and antioxidant activity. Bioorg. Med. Chem. 2004;12:5677–5687. PubMed

Wang X.J., Hayes J.D., Wolf C.R. Generation of a stable antioxidant response element-driven reporter gene cell line and its use to show redox-dependent activation of Nrf2 by cancer chemotherapeutic agents. Cancer Res. 2006;66:10983–10994. PubMed

Fahey J.W., Dinkova-Kostova A.T., Stephenson K.K., Talalay P. The “Prochaska” microtiter plate bioassay for inducers of NQO1. Methods Enzymol. 2004;382:243–258. PubMed

Vrba J., Gazak R., Kuzma M., Papouskova B., Vacek J., Weiszenstein M., Kren V., Ulrichova J. A novel semisynthetic flavonoid 7-O-galloyltaxifolin upregulates heme oxygenase-1 in RAW264.7 cells via MAPK/Nrf2 pathway. J. Med. Chem. 2013;56:856–866. PubMed

Dzubak P., Hajduch M., Gazak R., Svobodova A., Psotova J., Walterova D., Sedmera P., Kren V. New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorg. Med. Chem. 2006;14:3793–3810. PubMed

Nioi P., Hayes J.D. Contribution of NAD(P)H:quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loop-helix transcription factors. Mutat. Res. 2004;555:149–171. PubMed

Zhang Y., Talalay P., Cho C.G., Posner G.H. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc. Natl. Acad. Sci. U. S. A. 1992;89:2399–2403. PubMed PMC

Baird L., Swift S., Lleres D., Dinkova-Kostova A.T. Monitoring Keap1-Nrf2 interactions in single live cells. Biotechnol. Adv. 2014;32:1133–1144. PubMed PMC

Roubalova L., Biedermann D., Papouskova B., Vacek J., Kuzma M., Kren V., Ulrichova J., Dinkova-Kostova A.T., Vrba J. Semisynthetic flavonoid 7-O-galloylquercetin activates Nrf2 and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells. Chem. Biol. Interact. 2016;260:58–66. PubMed PMC

Dinkova-Kostova A.T., Talalay P. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch. Biochem. Biophys. 2010;501:116–123. PubMed PMC

Chow J.M., Shen S.C., Huan S.K., Lin H.Y., Chen Y.C. Quercetin, but not rutin and quercitrin, prevention of H2O2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochem. Pharmacol. 2005;69:1839–1851. PubMed

Thongphasuk P., Stremmel W., Chamulitrat W. 2,3-Dehydrosilybin is a better DNA topoisomerase I inhibitor than its parental silybin. Chemotherapy. 2009;55:42–48. PubMed

Dvorak Z., Vrzal R., Ulrichova J. Silybin and dehydrosilybin inhibit cytochrome P450 1A1 catalytic activity: a study in human keratinocytes and human hepatoma cells. Cell Biol. Toxicol. 2006;22:81–90. PubMed

Zhan T., Digel M., Kuch E.M., Stremmel W., Fullekrug J. Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins. J. Cell. Biochem. 2011;112:849–859. PubMed

Liang L., Gao C., Luo M., Wang W., Zhao C., Zu Y., Efferth T., Fu Y. Dihydroquercetin (DHQ) induced HO-1 and NQO1 expression against oxidative stress through the Nrf2-dependent antioxidant pathway. J. Agric. Food Chem. 2013;61:2755–2761. PubMed

Tanigawa S., Fujii M., Hou D.X. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic. Biol. Med. 2007;42:1690–1703. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...