Semisynthetic flavonoid 7-O-galloylquercetin activates Nrf2 and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells
Jazyk angličtina Země Irsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
18644
Cancer Research UK - United Kingdom
PubMed
27777014
PubMed Central
PMC5148792
DOI
10.1016/j.cbi.2016.10.015
PII: S0009-2797(16)30477-X
Knihovny.cz E-zdroje
- Klíčová slova
- Heme oxygenase-1, Metabolism, Methyl gallate, Nrf2, Quercetin, Quercetin-7-gallate,
- MeSH
- biotransformace účinky léků MeSH
- enzymová indukce účinky léků MeSH
- faktor 2 související s NF-E2 metabolismus MeSH
- hemoxygenasa-1 biosyntéza MeSH
- hmotnostní spektrometrie MeSH
- inhibitory proteinkinas farmakologie MeSH
- lidé MeSH
- metabolom účinky léků MeSH
- mitogenem aktivované proteinkinasy p38 metabolismus MeSH
- myši MeSH
- NAD(P)H dehydrogenasa (chinon) metabolismus MeSH
- nádorové buněčné linie MeSH
- quercetin chemická syntéza chemie farmakologie MeSH
- RAW 264.7 buňky MeSH
- reaktivní formy kyslíku metabolismus MeSH
- regulace genové exprese účinky léků MeSH
- reportérové geny MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- faktor 2 související s NF-E2 MeSH
- hemoxygenasa-1 MeSH
- inhibitory proteinkinas MeSH
- mitogenem aktivované proteinkinasy p38 MeSH
- NAD(P)H dehydrogenasa (chinon) MeSH
- quercetin MeSH
- reaktivní formy kyslíku MeSH
The natural flavonoid quercetin is known to activate the transcription factor Nrf2, which regulates the expression of cytoprotective enzymes such as heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). In this study, a novel semisynthetic flavonoid 7-O-galloylquercetin (or quercetin-7-gallate, 3) was prepared by direct galloylation of quercetin, and its effect on the Nrf2 pathway was examined. A luciferase reporter assay showed that 7-O-galloylquercetin, like quercetin, significantly activated transcription via the antioxidant response element in a stably transfected human AREc32 reporter cell line. In addition, 7-O-galloylquercetin caused the accumulation of Nrf2 and induced the expression of HO-1 at both the mRNA and protein levels in murine macrophage RAW264.7 cells. The induction of HO-1 by 7-O-galloylquercetin was significantly suppressed by N-acetyl-l-cysteine and SB203580, indicating the involvement of reactive oxygen species and p38 mitogen-activated protein kinase activity, respectively. HPLC/MS analyses also showed that 7-O-galloylquercetin was not degalloylated to quercetin, but it was conjugated with glucuronic acid and/or methylated in RAW264.7 cells. Furthermore, 7-O-galloylquercetin was found to increase the protein levels of Nrf2 and HO-1, and also the activity of NQO1 in murine hepatoma Hepa1c1c7 cells. Taken together, we conclude that 7-O-galloylquercetin increases Nrf2 activity and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells.
Zobrazit více v PubMed
Quideau S., Deffieux D., Douat-Casassus C., Pouysegu L. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. 2011;50:586–621. PubMed
Materska M. Quercetin and its derivatives: chemical structure and bioactivity - a review. Pol. J. Food Nutr. Sci. 2008;58:407–413.
Day A.J., Mellon F., Barron D., Sarrazin G., Morgan M.R., Williamson G. Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free Radic. Res. 2001;35:941–952. PubMed
Biasutto L., Zoratti M. Prodrugs of quercetin and resveratrol: a strategy under development. Curr. Drug Metab. 2014;15:77–95. PubMed
Needs P.W., Kroon P.A. Convenient syntheses of metabolically important quercetin glucuronides and sulfates. Tetrahedron. 2006;62:6862–6868.
Roubalova L., Purchartova K., Papouskova B., Vacek J., Kren V., Ulrichova J., Vrba J. Sulfation modulates the cell uptake, antiradical activity and biological effects of flavonoids in vitro: an examination of quercetin, isoquercitrin and taxifolin. Bioorg. Med. Chem. 2015;23:5402–5409. PubMed
Gatto M.T., Falcocchio S., Grippa E., Mazzanti G., Battinelli L., Nicolosi G., Lambusta D., Saso L. Antimicrobial and anti-lipase activity of quercetin and its C2-C16 3-O-acyl-esters. Bioorg. Med. Chem. 2002;10:269–272. PubMed
Montenegro L., Carbone C., Maniscalco C., Lambusta D., Nicolosi G., Ventura C.A., Puglisi G. In vitro evaluation of quercetin-3-O-acyl esters as topical prodrugs. Int. J. Pharm. 2007;336:257–262. PubMed
Blaskovic D., Zizkova P., Drzik F., Viskupicova J., Veverka M., Horakova L. Modulation of rabbit muscle sarcoplasmic reticulum Ca2+-ATPase activity by novel quercetin derivatives. Interdiscip. Toxicol. 2013;6:3–8. PubMed PMC
Thapa M., Kim Y., Desper J., Chang K.O., Hua D.H. Synthesis and antiviral activity of substituted quercetins. Bioorg. Med. Chem. Lett. 2012;22:353–356. PubMed PMC
Vrba J., Gazak R., Kuzma M., Papouskova B., Vacek J., Weiszenstein M., Kren V., Ulrichova J. A novel semisynthetic flavonoid 7-O-galloyltaxifolin upregulates heme oxygenase-1 in RAW264.7 cells via MAPK/Nrf2 pathway. J. Med. Chem. 2013;56:856–866. PubMed
Kim M.K., Park K.S., Yeo W.S., Choo H., Chong Y. In vitro solubility, stability and permeability of novel quercetin-amino acid conjugates. Bioorg. Med. Chem. 2009;17:1164–1171. PubMed
Correia-da-Silva M., Sousa E., Pinto M.M. Emerging sulfated flavonoids and other polyphenols as drugs: nature as an inspiration. Med. Res. Rev. 2014;34:223–279. PubMed
Purchartova K., Valentova K., Pelantova H., Marhol P., Cvacka J., Havlicek L., Krenkova A., Vavrikova E., Biedermann D., Chambers C.S., Kren V. Prokaryotic and eukaryotic aryl sulfotransferases: sulfation of quercetin and its derivatives. ChemCatChem. 2015;7:3152–3162.
Yamauchi K., Mitsunaga T., Batubara I. Synthesis of quercetin glycosides and their melanogenesis stimulatory activity in B16 melanoma cells. Bioorg. Med. Chem. 2014;22:937–944. PubMed
Yamauchi K., Mitsunaga T., Inagaki M., Suzuki T. Synthesized quercetin derivatives stimulate melanogenesis in B16 melanoma cells by influencing the expression of melanin biosynthesis proteins MITF and p38 MAPK. Bioorg. Med. Chem. 2014;22:3331–3340. PubMed
Granado-Serrano A.B., Martin M.A., Bravo L., Goya L., Ramos S. Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: involvement of p38. Chem. Biol. Interact. 2012;195:154–164. PubMed
Tanigawa S., Fujii M., Hou D.X. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic. Biol. Med. 2007;42:1690–1703. PubMed
Hayes J.D., Dinkova-Kostova A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 2014;39:199–218. PubMed
Chen C., Yu R., Owuor E.D., Kong A.N. Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch. Pharm. Res. 2000;23:605–612. PubMed
Wang X.J., Hayes J.D., Wolf C.R. Generation of a stable antioxidant response element-driven reporter gene cell line and its use to show redox-dependent activation of Nrf2 by cancer chemotherapeutic agents. Cancer Res. 2006;66:10983–10994. PubMed
Vacek J., Papouskova B., Vrba J., Zatloukalova M., Kren V., Ulrichova J. LC-MS metabolic study on quercetin and taxifolin galloyl esters using human hepatocytes as toxicity and biotransformation in vitro cell model. J. Pharm. Biomed. Anal. 2013;86:135–142. PubMed
Fahey J.W., Dinkova-Kostova A.T., Stephenson K.K., Talalay P. The “Prochaska” microtiter plate bioassay for inducers of NQO1. Methods Enzymol. 2004;382:243–258. PubMed
Otterbein L.E., Soares M.P., Yamashita K., Bach F.H. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 2003;24:449–455. PubMed
Chow J.M., Shen S.C., Huan S.K., Lin H.Y., Chen Y.C. Quercetin, but not rutin and quercitrin, prevention of H2O2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochem. Pharmacol. 2005;69:1839–1851. PubMed
Cha S.H., Suh C.K. Heme oxygenase-1 mediated protective effect of methyl gallate on cadmium-induced cytotoxicity in cultured mouse mesangial cells. Mol. Cell. Toxicol. 2010;6:127–133.
Dinkova-Kostova A.T., Abramov A.Y. The emerging role of Nrf2 in mitochondrial function. Free Radic. Biol. Med. 2015;88:179–188. PubMed PMC
Surh Y.J., Kundu J.K., Na H.K. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med. 2008;74:1526–1539. PubMed
Son Y., Cheong Y.K., Kim N.H., Chung H.T., Kang D.G., Pae H.O. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J. Signal Transduct. 2011;2011:792639. PubMed PMC
Yasuda T., Inaba A., Ohmori M., Endo T., Kubo S., Ohsawa K. Urinary metabolites of gallic acid in rats and their radical-scavenging effects on 1,1-diphenyl-2-picrylhydrazyl radical. J. Nat. Prod. 2000;63:1444–1446. PubMed
Kawai Y., Nishikawa T., Shiba Y., Saito S., Murota K., Shibata N., Kobayashi M., Kanayama M., Uchida K., Terao J. Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: implication in the anti-atherosclerotic mechanism of dietary flavonoids. J. Biol. Chem. 2008;283:9424–9434. PubMed
Tochigi Y., Yamashiki N., Ohgiya S., Ganaha S., Yokota H. Isoform-specific expression and induction of UDP-glucuronosyltransferase in immunoactivated peritoneal macrophages of the rat. Drug Metab. Dispos. 2005;33:1391–1398. PubMed
Yen G.C., Duh P.D., Tsai H.L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002;79:307–313.
Andjelkovic M., Van Camp J., De Meulenaer B., Depaemelaere G., Socaciu C., Verloo M., Verhe R. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 2006;98:23–31.
Vacek J., Zatloukalova M., Desmier T., Nezhodova V., Hrbac J., Kubala M., Kren V., Ulrichova J., Trouillas P. Antioxidant, metal-binding and DNA-damaging properties of flavonolignans: a joint experimental and computational highlight based on 7-O-galloylsilybin. Chem. Biol. Interact. 2013;205:173–180. PubMed