Semisynthetic flavonoid 7-O-galloylquercetin activates Nrf2 and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells

. 2016 Dec 25 ; 260 () : 58-66. [epub] 20161021

Jazyk angličtina Země Irsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27777014

Grantová podpora
18644 Cancer Research UK - United Kingdom

Odkazy

PubMed 27777014
PubMed Central PMC5148792
DOI 10.1016/j.cbi.2016.10.015
PII: S0009-2797(16)30477-X
Knihovny.cz E-zdroje

The natural flavonoid quercetin is known to activate the transcription factor Nrf2, which regulates the expression of cytoprotective enzymes such as heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). In this study, a novel semisynthetic flavonoid 7-O-galloylquercetin (or quercetin-7-gallate, 3) was prepared by direct galloylation of quercetin, and its effect on the Nrf2 pathway was examined. A luciferase reporter assay showed that 7-O-galloylquercetin, like quercetin, significantly activated transcription via the antioxidant response element in a stably transfected human AREc32 reporter cell line. In addition, 7-O-galloylquercetin caused the accumulation of Nrf2 and induced the expression of HO-1 at both the mRNA and protein levels in murine macrophage RAW264.7 cells. The induction of HO-1 by 7-O-galloylquercetin was significantly suppressed by N-acetyl-l-cysteine and SB203580, indicating the involvement of reactive oxygen species and p38 mitogen-activated protein kinase activity, respectively. HPLC/MS analyses also showed that 7-O-galloylquercetin was not degalloylated to quercetin, but it was conjugated with glucuronic acid and/or methylated in RAW264.7 cells. Furthermore, 7-O-galloylquercetin was found to increase the protein levels of Nrf2 and HO-1, and also the activity of NQO1 in murine hepatoma Hepa1c1c7 cells. Taken together, we conclude that 7-O-galloylquercetin increases Nrf2 activity and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells.

Zobrazit více v PubMed

Quideau S., Deffieux D., Douat-Casassus C., Pouysegu L. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. 2011;50:586–621. PubMed

Materska M. Quercetin and its derivatives: chemical structure and bioactivity - a review. Pol. J. Food Nutr. Sci. 2008;58:407–413.

Day A.J., Mellon F., Barron D., Sarrazin G., Morgan M.R., Williamson G. Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free Radic. Res. 2001;35:941–952. PubMed

Biasutto L., Zoratti M. Prodrugs of quercetin and resveratrol: a strategy under development. Curr. Drug Metab. 2014;15:77–95. PubMed

Needs P.W., Kroon P.A. Convenient syntheses of metabolically important quercetin glucuronides and sulfates. Tetrahedron. 2006;62:6862–6868.

Roubalova L., Purchartova K., Papouskova B., Vacek J., Kren V., Ulrichova J., Vrba J. Sulfation modulates the cell uptake, antiradical activity and biological effects of flavonoids in vitro: an examination of quercetin, isoquercitrin and taxifolin. Bioorg. Med. Chem. 2015;23:5402–5409. PubMed

Gatto M.T., Falcocchio S., Grippa E., Mazzanti G., Battinelli L., Nicolosi G., Lambusta D., Saso L. Antimicrobial and anti-lipase activity of quercetin and its C2-C16 3-O-acyl-esters. Bioorg. Med. Chem. 2002;10:269–272. PubMed

Montenegro L., Carbone C., Maniscalco C., Lambusta D., Nicolosi G., Ventura C.A., Puglisi G. In vitro evaluation of quercetin-3-O-acyl esters as topical prodrugs. Int. J. Pharm. 2007;336:257–262. PubMed

Blaskovic D., Zizkova P., Drzik F., Viskupicova J., Veverka M., Horakova L. Modulation of rabbit muscle sarcoplasmic reticulum Ca2+-ATPase activity by novel quercetin derivatives. Interdiscip. Toxicol. 2013;6:3–8. PubMed PMC

Thapa M., Kim Y., Desper J., Chang K.O., Hua D.H. Synthesis and antiviral activity of substituted quercetins. Bioorg. Med. Chem. Lett. 2012;22:353–356. PubMed PMC

Vrba J., Gazak R., Kuzma M., Papouskova B., Vacek J., Weiszenstein M., Kren V., Ulrichova J. A novel semisynthetic flavonoid 7-O-galloyltaxifolin upregulates heme oxygenase-1 in RAW264.7 cells via MAPK/Nrf2 pathway. J. Med. Chem. 2013;56:856–866. PubMed

Kim M.K., Park K.S., Yeo W.S., Choo H., Chong Y. In vitro solubility, stability and permeability of novel quercetin-amino acid conjugates. Bioorg. Med. Chem. 2009;17:1164–1171. PubMed

Correia-da-Silva M., Sousa E., Pinto M.M. Emerging sulfated flavonoids and other polyphenols as drugs: nature as an inspiration. Med. Res. Rev. 2014;34:223–279. PubMed

Purchartova K., Valentova K., Pelantova H., Marhol P., Cvacka J., Havlicek L., Krenkova A., Vavrikova E., Biedermann D., Chambers C.S., Kren V. Prokaryotic and eukaryotic aryl sulfotransferases: sulfation of quercetin and its derivatives. ChemCatChem. 2015;7:3152–3162.

Yamauchi K., Mitsunaga T., Batubara I. Synthesis of quercetin glycosides and their melanogenesis stimulatory activity in B16 melanoma cells. Bioorg. Med. Chem. 2014;22:937–944. PubMed

Yamauchi K., Mitsunaga T., Inagaki M., Suzuki T. Synthesized quercetin derivatives stimulate melanogenesis in B16 melanoma cells by influencing the expression of melanin biosynthesis proteins MITF and p38 MAPK. Bioorg. Med. Chem. 2014;22:3331–3340. PubMed

Granado-Serrano A.B., Martin M.A., Bravo L., Goya L., Ramos S. Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: involvement of p38. Chem. Biol. Interact. 2012;195:154–164. PubMed

Tanigawa S., Fujii M., Hou D.X. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic. Biol. Med. 2007;42:1690–1703. PubMed

Hayes J.D., Dinkova-Kostova A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 2014;39:199–218. PubMed

Chen C., Yu R., Owuor E.D., Kong A.N. Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch. Pharm. Res. 2000;23:605–612. PubMed

Wang X.J., Hayes J.D., Wolf C.R. Generation of a stable antioxidant response element-driven reporter gene cell line and its use to show redox-dependent activation of Nrf2 by cancer chemotherapeutic agents. Cancer Res. 2006;66:10983–10994. PubMed

Vacek J., Papouskova B., Vrba J., Zatloukalova M., Kren V., Ulrichova J. LC-MS metabolic study on quercetin and taxifolin galloyl esters using human hepatocytes as toxicity and biotransformation in vitro cell model. J. Pharm. Biomed. Anal. 2013;86:135–142. PubMed

Fahey J.W., Dinkova-Kostova A.T., Stephenson K.K., Talalay P. The “Prochaska” microtiter plate bioassay for inducers of NQO1. Methods Enzymol. 2004;382:243–258. PubMed

Otterbein L.E., Soares M.P., Yamashita K., Bach F.H. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 2003;24:449–455. PubMed

Chow J.M., Shen S.C., Huan S.K., Lin H.Y., Chen Y.C. Quercetin, but not rutin and quercitrin, prevention of H2O2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochem. Pharmacol. 2005;69:1839–1851. PubMed

Cha S.H., Suh C.K. Heme oxygenase-1 mediated protective effect of methyl gallate on cadmium-induced cytotoxicity in cultured mouse mesangial cells. Mol. Cell. Toxicol. 2010;6:127–133.

Dinkova-Kostova A.T., Abramov A.Y. The emerging role of Nrf2 in mitochondrial function. Free Radic. Biol. Med. 2015;88:179–188. PubMed PMC

Surh Y.J., Kundu J.K., Na H.K. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med. 2008;74:1526–1539. PubMed

Son Y., Cheong Y.K., Kim N.H., Chung H.T., Kang D.G., Pae H.O. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J. Signal Transduct. 2011;2011:792639. PubMed PMC

Yasuda T., Inaba A., Ohmori M., Endo T., Kubo S., Ohsawa K. Urinary metabolites of gallic acid in rats and their radical-scavenging effects on 1,1-diphenyl-2-picrylhydrazyl radical. J. Nat. Prod. 2000;63:1444–1446. PubMed

Kawai Y., Nishikawa T., Shiba Y., Saito S., Murota K., Shibata N., Kobayashi M., Kanayama M., Uchida K., Terao J. Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: implication in the anti-atherosclerotic mechanism of dietary flavonoids. J. Biol. Chem. 2008;283:9424–9434. PubMed

Tochigi Y., Yamashiki N., Ohgiya S., Ganaha S., Yokota H. Isoform-specific expression and induction of UDP-glucuronosyltransferase in immunoactivated peritoneal macrophages of the rat. Drug Metab. Dispos. 2005;33:1391–1398. PubMed

Yen G.C., Duh P.D., Tsai H.L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002;79:307–313.

Andjelkovic M., Van Camp J., De Meulenaer B., Depaemelaere G., Socaciu C., Verloo M., Verhe R. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 2006;98:23–31.

Vacek J., Zatloukalova M., Desmier T., Nezhodova V., Hrbac J., Kubala M., Kren V., Ulrichova J., Trouillas P. Antioxidant, metal-binding and DNA-damaging properties of flavonolignans: a joint experimental and computational highlight based on 7-O-galloylsilybin. Chem. Biol. Interact. 2013;205:173–180. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...