Flavonolignan 2,3-dehydrosilydianin activates Nrf2 and upregulates NAD(P)H:quinone oxidoreductase 1 in Hepa1c1c7 cells
Language English Country Netherlands Media print-electronic
Document type Journal Article
Grant support
18644
Cancer Research UK - United Kingdom
PubMed
28450126
PubMed Central
PMC5476199
DOI
10.1016/j.fitote.2017.04.012
PII: S0367-326X(17)30302-7
Knihovny.cz E-resources
- Keywords
- Flavonolignans, NQO1, Nrf2, Silybin, Silybum marianum, Silymarin,
- MeSH
- Gene Expression drug effects MeSH
- NF-E2-Related Factor 2 metabolism MeSH
- Glutamate-Cysteine Ligase genetics metabolism MeSH
- Heme Oxygenase-1 genetics metabolism MeSH
- Humans MeSH
- Membrane Proteins genetics metabolism MeSH
- Molecular Structure MeSH
- Mice MeSH
- NAD(P)H Dehydrogenase (Quinone) genetics metabolism MeSH
- Cell Line, Tumor MeSH
- Silybum marianum chemistry MeSH
- Silybin MeSH
- Silymarin pharmacology MeSH
- Up-Regulation MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- NF-E2-Related Factor 2 MeSH
- GCLM protein, mouse MeSH Browser
- Glutamate-Cysteine Ligase MeSH
- Heme Oxygenase-1 MeSH
- Hmox1 protein, mouse MeSH Browser
- Membrane Proteins MeSH
- NAD(P)H Dehydrogenase (Quinone) MeSH
- NFE2L2 protein, human MeSH Browser
- Nqo1 protein, mouse MeSH Browser
- Silybin MeSH
- silidianin MeSH Browser
- silychristin MeSH Browser
- Silymarin MeSH
Silybum marianum (milk thistle) is a medicinal plant used for the treatment of various liver disorders. This study examined whether the main flavonolignans from S. marianum (i.e. silybin, silychristin, silydianin) and their 2,3-dehydro derivatives (i.e. 2,3-dehydrosilybin, 2,3-dehydrosilychristin, 2,3-dehydrosilydianin) activate the Nrf2 pathway, which regulates the expression of genes encoding many cytoprotective enzymes, including NAD(P)H:quinone oxidoreductase 1 (NQO1). After 48h of exposure, 2,3-dehydrosilydianin at concentrations of 25μM and higher significantly elevated the activity of NQO1 in murine hepatoma Hepa1c1c7 cells. In contrast, other tested compounds at non-cytotoxic concentrations had a mild or negligible effect on the NQO1 activity. Using a luciferase reporter assay, 2,3-dehydrosilydianin was found to significantly activate transcription via the antioxidant response element in stably transfected human AREc32 reporter cells. Moreover, 2,3-dehydrosilydianin caused the accumulation of Nrf2 and significantly induced the expression of the Nqo1 gene at both the mRNA and protein levels in Hepa1c1c7 cells. We found that 2,3-dehydrosilydianin also increased to some extent the expression of other Nrf2 target genes, namely of the heme oxygenase-1 gene (Hmox1) and the glutamate-cysteine ligase modifier subunit gene (Gclm). We conclude that 2,3-dehydrosilydianin activates Nrf2 and induces Nrf2-mediated gene expression in Hepa1c1c7 cells.
See more in PubMed
Begum S.A., Sahai M., Ray A.B. Non-conventional lignans: coumarinolignans, flavonolignans, and stilbenolignans. Prog. Chem. Org. Nat. Prod. 2010;93:1–70. PubMed
Biedermann D., Vavrikova E., Cvak L., Kren V. Chemistry of silybin. Nat. Prod. Rep. 2014;31:1138–1157. PubMed
Chambers C.S., Valentova K., Kren V. “Non-taxifolin” derived flavonolignans: phytochemistry and biology. Curr. Pharm. Des. 2015;21:5489–5500. PubMed
Abenavoli L., Capasso R., Milic N., Capasso F. Milk thistle in liver diseases: past, present, future. Phytother. Res. 2010;24:1423–1432. PubMed
Federico A., Dallio M., Loguercio C. Silymarin/silybin and chronic liver disease: a marriage of many years. Molecules. 2017;22:191. PubMed PMC
Feher P., Ujhelyi Z., Varadi J., Fenyvesi F., Roka E., Juhasz B., Varga B., Bombicz M., Priksz D., Bacskay I., Vecsernyes M. Efficacy of pre- and post-treatment by topical formulations containing dissolved and suspended Silybum marianum against UVB-induced oxidative stress in guinea pig and on HaCaT keratinocytes. Molecules. 2016;21:1269. PubMed PMC
Gazak R., Walterova D., Kren V. Silybin and silymarin - new and emerging applications in medicine. Curr. Med. Chem. 2007;14:315–338. PubMed
Surai P.F. Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants. 2015;4:204–247. PubMed PMC
Prochazkova D., Bousova I., Wilhelmova N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82:513–523. PubMed
Biedermann D., Buchta M., Holeckova V., Sedlak D., Valentova K., Cvacka J., Bednarova L., Krenkova A., Kuzma M., Skuta C., Peikerova Z., Bartunek P., Kren V. Silychristin: skeletal alterations and biological activities. J. Nat. Prod. 2016;79:3086–3092. PubMed
Pyszkova M., Biler M., Biedermann D., Valentova K., Kuzma M., Vrba J., Ulrichova J., Sokolova R., Mojovic M., Popovic-Bijelic A., Kubala M., Trouillas P., Kren V., Vacek J. Flavonolignan 2,3-dehydroderivatives: preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. PubMed
Trouillas P., Marsal P., Svobodova A., Vostalova J., Gazak R., Hrbac J., Sedmera P., Kren V., Lazzaroni R., Duroux J.L., Walterova D. Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: a joint experimental and theoretical study. J. Phys. Chem. A. 2008;112:1054–1063. PubMed
Borsari M., Gabbi C., Ghelfi F., Grandi R., Saladini M., Severi S., Borella F. Silybin, a new iron-chelating agent. J. Inorg. Biochem. 2001;85:123–129. PubMed
Varga Z., Seres I., Nagy E., Ujhelyi L., Balla G., Balla J., Antus S. Structure prerequisite for antioxidant activity of silybin in different biochemical systems in vitro. Phytomedicine. 2006;13:85–93. PubMed
Bonifaz V., Shan Y., Lambrecht R.W., Donohue S.E., Moschenross D., Bonkovsky H.L. Effects of silymarin on hepatitis C virus and haem oxygenase-1 gene expression in human hepatoma cells. Liver Int. 2009;29:366–373. PubMed PMC
Hayes J.D., Dinkova-Kostova A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 2014;39:199–218. PubMed
Zhao J., Agarwal R. Tissue distribution of silibinin, the major active constituent of silymarin, in mice and its association with enhancement of phase II enzymes: implications in cancer chemoprevention. Carcinogenesis. 1999;20:2101–2108. PubMed
Krenek K., Marhol P., Peikerova Z., Kren V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120.
Gazak R., Svobodova A., Psotova J., Sedmera P., Prikrylova V., Walterova D., Kren V. Oxidised derivatives of silybin and their antiradical and antioxidant activity. Bioorg. Med. Chem. 2004;12:5677–5687. PubMed
Wang X.J., Hayes J.D., Wolf C.R. Generation of a stable antioxidant response element-driven reporter gene cell line and its use to show redox-dependent activation of Nrf2 by cancer chemotherapeutic agents. Cancer Res. 2006;66:10983–10994. PubMed
Fahey J.W., Dinkova-Kostova A.T., Stephenson K.K., Talalay P. The “Prochaska” microtiter plate bioassay for inducers of NQO1. Methods Enzymol. 2004;382:243–258. PubMed
Vrba J., Gazak R., Kuzma M., Papouskova B., Vacek J., Weiszenstein M., Kren V., Ulrichova J. A novel semisynthetic flavonoid 7-O-galloyltaxifolin upregulates heme oxygenase-1 in RAW264.7 cells via MAPK/Nrf2 pathway. J. Med. Chem. 2013;56:856–866. PubMed
Dzubak P., Hajduch M., Gazak R., Svobodova A., Psotova J., Walterova D., Sedmera P., Kren V. New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorg. Med. Chem. 2006;14:3793–3810. PubMed
Nioi P., Hayes J.D. Contribution of NAD(P)H:quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loop-helix transcription factors. Mutat. Res. 2004;555:149–171. PubMed
Zhang Y., Talalay P., Cho C.G., Posner G.H. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc. Natl. Acad. Sci. U. S. A. 1992;89:2399–2403. PubMed PMC
Baird L., Swift S., Lleres D., Dinkova-Kostova A.T. Monitoring Keap1-Nrf2 interactions in single live cells. Biotechnol. Adv. 2014;32:1133–1144. PubMed PMC
Roubalova L., Biedermann D., Papouskova B., Vacek J., Kuzma M., Kren V., Ulrichova J., Dinkova-Kostova A.T., Vrba J. Semisynthetic flavonoid 7-O-galloylquercetin activates Nrf2 and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells. Chem. Biol. Interact. 2016;260:58–66. PubMed PMC
Dinkova-Kostova A.T., Talalay P. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch. Biochem. Biophys. 2010;501:116–123. PubMed PMC
Chow J.M., Shen S.C., Huan S.K., Lin H.Y., Chen Y.C. Quercetin, but not rutin and quercitrin, prevention of H2O2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochem. Pharmacol. 2005;69:1839–1851. PubMed
Thongphasuk P., Stremmel W., Chamulitrat W. 2,3-Dehydrosilybin is a better DNA topoisomerase I inhibitor than its parental silybin. Chemotherapy. 2009;55:42–48. PubMed
Dvorak Z., Vrzal R., Ulrichova J. Silybin and dehydrosilybin inhibit cytochrome P450 1A1 catalytic activity: a study in human keratinocytes and human hepatoma cells. Cell Biol. Toxicol. 2006;22:81–90. PubMed
Zhan T., Digel M., Kuch E.M., Stremmel W., Fullekrug J. Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins. J. Cell. Biochem. 2011;112:849–859. PubMed
Liang L., Gao C., Luo M., Wang W., Zhao C., Zu Y., Efferth T., Fu Y. Dihydroquercetin (DHQ) induced HO-1 and NQO1 expression against oxidative stress through the Nrf2-dependent antioxidant pathway. J. Agric. Food Chem. 2013;61:2755–2761. PubMed
Tanigawa S., Fujii M., Hou D.X. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic. Biol. Med. 2007;42:1690–1703. PubMed
Sulfated Metabolites of Flavonolignans and 2,3-Dehydroflavonolignans: Preparation and Properties