Impact of dielectric constant of solvent on the formation of transition metal-ammine complexes

. 2024 Feb 05 ; 45 (4) : 204-209. [epub] 20230926

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37752737

Grantová podpora
19-27454X Grantová Agentura České Republiky

The DFT-level computational investigations into Gibbs free energies (ΔG) demonstrate that as the dielectric constant of the solvent increases, the stabilities of [M(NH3 )n ]2+/3+ (n = 4, 6; M = selected 3d transition metals) complexes decrease. However, there is no observed correlation between the stability of the complex and the solvent donor number. Analysis of the charge transfer and Wiberg bond indices indicates a dative-bond character in all the complexes. The solvent effect assessed through solvation energy is determined by the change in the solvent accessible surface area (SASA) and the change in the charge distribution that occurs during complex formation. It has been observed that the SASA and charge transfer are different in the different coordination numbers, resulting in a variation in the solvent effect on complex stability in different solvents. This ultimately leads to a change between the relative stability of complexes with different coordination numbers while increasing the solvent polarity for a few complexes. Moreover, the findings indicate a direct relationship between ΔΔG (∆Gsolvent -∆Ggas ) and ΔEsolv , which enables the computation of ΔG for the compounds in a particular solvent using only ΔGgas and ΔEsolv . This approach is less computationally expensive.

Zobrazit více v PubMed

C. C. Robertson, R. N. Perutz, L. Brammer, C. A. Hunter, Chem. Sci. 2014, 5, 4179.

V. M. Miriyala, R. Lo, P. Bouř, T. Wu, D. Nachtigallová, P. Hobza, J. Phys. Chem. A 2022, 126, 7938.

R. Lo, A. Mašínová, M. Lamanec, D. Nachtigallová, P. Hobza, J. Comput. Chem. 2023, 44, 329.

J. A. Plumley, J. D. Evanseck, J. Phys. Chem. A 2007, 111, 13472.

D. Zhong, A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 2602.

R. Lo, D. Manna, M. Lamanec, M. Dračínský, P. Bouř, T. Wu, G. Bastien, J. Kaleta, V. M. Miriyala, V. Špirko, A. Mašínová, D. Nachtigallová, P. Hobza, Nat. Commun. 2022, 13, 2107.

M. Lamanec, R. Lo, D. Nachtigallová, A. Bakandritsos, E. Mohammadi, M. Dračínský, R. Zbořil, P. Hobza, W. Wang, Angew. Chem., Int. Ed. 2021, 60, 1942.

R. Lo, D. Manna, M. Lamanec, W. Wang, A. Bakandritsos, M. Dračínský, R. Zbořil, D. Nachtigallová, P. Hobza, J. Am. Chem. Soc. 2021, 143, 10930.

R. Lo, M. Lamanec, W. Wang, D. Manna, A. Bakandritsos, M. Dračínský, R. Zbořil, D. Nachtigallová, P. Hobza, Phys. Chem. Chem. Phys. 2021, 23, 4365.

E. Buncel, R. A. Stairs, H. Wilson, Role of the Solvent in Chemical Reactions, Oxford University Press, London 2003.

B. G. Cox, H. Schneider, Coordination and Transport Properties of Macrocyclic Compounds in Solution, Elsevier, Amsterdam 1992.

C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd ed., Wiley-VCH, Weinheim 2002.

M. Payehghadr, S. E. Hashemi, J. Inclusion Phenom. Macrocyclic Chem. 2017, 89, 253.

R. M. Smith, A. E. Martell, Critical Stability Constants, Plenum Press, New York, NY 2004.

M. R. Tiné, Coord. Chem. Rev. 2012, 256, 316.

D. Manna, R. Lo, D. Nachtigallová, Z. Trávníček, P. Hobza, Chem.: Eur. J. 2023, 29, e202300635.

S. J. Lippard, J. M. Berg, Principles of Bioinorganic Chemistry, University Science Books, Mill Valley, CA 1994.

B. Salbu, E. Steinnes, Trace Elements in Natural Waters, CRC Press, Boca Raton, FL 1995.

A. Bianchi, L. Calabi, F. Corana, S. Fontana, P. Losi, A. Maiocchi, L. Paleari, B. Valtancoli, Coord. Chem. Rev. 2000, 204, 309.

V. Solov'Ev, A. Tsivadze, Inorg. Chem. 2022, 43, 16.

N. L. Allinger, X. Zhou, J. Bergsma, J. Mol. Struct.: Theochem 1994, 312, 69.

T. N. Truong, E. V. Stefanovich, J. Chem. Phys. 1995, 103, 3709.

M. Born, Z. Physik 1920, 1, 45.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...