HRAS, EGFR, MET, and RON Genes Are Recurrently Activated by Provirus Insertion in Liver Tumors Induced by the Retrovirus Myeloblastosis-Associated Virus 2

. 2017 Oct 15 ; 91 (20) : . [epub] 20170927

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28768863

Myeloblastosis-associated virus 2 (MAV-2) is a highly tumorigenic simple avian retrovirus. Chickens infected in ovo with MAV-2 develop tumors in the kidneys, lungs, and liver with a short latency, less than 8 weeks. Here we report the results of molecular analyses of MAV-2-induced liver tumors that fall into three classes: hepatic hemangiosarcomas (HHSs), intrahepatic cholangiocarcinomas (ICCs), and hepatocellular carcinomas (HCCs). Comprehensive inverse PCR-based screening of 92 chicken liver tumors revealed that in ca. 86% of these tumors, MAV-2 provirus had integrated into one of four gene loci: HRAS, EGFR, MET, and RON Insertionally mutated genes correlated with tumor type: HRAS was hit in HHSs, MET in ICCs, RON mostly in ICCs, and EGFR mostly in HCCs. The provirus insertions led to the overexpression of the affected genes and, in the case of EGFR and RON, also to the truncation of exons encoding the extracellular ligand-binding domains of these transmembrane receptors. The structures of truncated EGFR and RON closely mimic the structures of oncogenic variants of these genes frequently found in human tumors (EGFRvIII and sfRON).IMPORTANCE These data describe the mechanisms of oncogenesis induced in chickens by the MAV-2 retrovirus. They also show that molecular processes converting cellular regulatory genes to cancer genes may be remarkably similar in chickens and humans. We suggest that the MAV-2 retrovirus-based model can complement experiments performed using mouse models and provide data that could translate to human medicine.

Zobrazit více v PubMed

Smith RE, Moscovici C. 1969. The oncogenic effects of nontransforming viruses from avian myeloblastosis virus. Cancer Res 29:1356–1366. PubMed

Perbal B, Lipsick JS, Svoboda J, Silva RF, Baluda MA. 1985. Biologically active proviral clone of myeloblastosis-associated virus type 1: implications for the genesis of avian myeloblastosis virus. J Virol 56:240–244. PubMed PMC

Pajer P, Karafiat V, Pecenka V, Prukova D, Dudlova J, Plachy J, Kasparova P, Dvorak M. 2009. Industasis, a promotion of tumor formation by nontumorigenic stray cells. Cancer Res 69:4605–4612. doi:10.1158/0008-5472.CAN-08-4636. PubMed DOI

Pajer P, Pecenka V, Kralova J, Karafiat V, Prukova D, Zemanova Z, Kodet R, Dvorak M. 2006. Identification of potential human oncogenes by mapping the common viral integration sites in avian nephroblastoma. Cancer Res 66:78–86. doi:10.1158/0008-5472.CAN-05-1728. PubMed DOI

Uren AG, Kool J, Berns A, van Lohuizen M. 2005. Retroviral insertional mutagenesis: past, present and future. Oncogene 24:7656–7672. doi:10.1038/sj.onc.1209043. PubMed DOI

Hayward WS, Neel BG, Astrin SM. 1981. Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290:475–480. doi:10.1038/290475a0. PubMed DOI

Clurman BE, Hayward WS. 1989. Multiple proto-oncogene activations in avian leukosis virus-induced lymphomas: evidence for stage-specific events. Mol Cell Biol 9:2657–2664. doi:10.1128/MCB.9.6.2657. PubMed DOI PMC

Yang F, Xian RR, Li Y, Polony TS, Beemon KL. 2007. Telomerase reverse transcriptase expression elevated by avian leukosis virus integration in B cell lymphomas. Proc Natl Acad Sci U S A 104:18952–18957. doi:10.1073/pnas.0709173104. PubMed DOI PMC

Fung YK, Lewis WG, Crittenden LB, Kung HJ. 1983. Activation of the cellular oncogene c-erbB by LTR insertion: molecular basis for induction of erythroblastosis by avian leukosis virus. Cell 33:357–368. doi:10.1016/0092-8674(83)90417-8. PubMed DOI

Li Y, Liu X, Yang Z, Xu C, Liu D, Qin J, Dai M, Hao J, Feng M, Huang X, Tan L, Cao W, Liao M. 2014. The MYC, TERT, and ZIC1 genes are common targets of viral integration and transcriptional deregulation in avian leukosis virus subgroup J-induced myeloid leukosis. J Virol 88:3182–3191. doi:10.1128/JVI.02995-13. PubMed DOI PMC

Jonkers J, Berns A. 1996. Retroviral insertional mutagenesis as a strategy to identify cancer genes. Biochim Biophys Acta 1287:29–57. PubMed

Kool J, Berns A. 2009. High-throughput insertional mutagenesis screens in mice to identify oncogenic networks. Nat Rev Cancer 9:389–399. doi:10.1038/nrc2647. PubMed DOI

Pajer P, Pecenka V, Karafiat V, Kralova J, Horejsi Z, Dvorak M. 2003. The twist gene is a common target of retroviral integration and transcriptional deregulation in experimental nephroblastoma. Oncogene 22:665–673. doi:10.1038/sj.onc.1206105. PubMed DOI

Schmidt RE, Reavill DR, Phalen DN. 2003. Pathology of pet and aviary birds, p 67–93. Blackwell Publishing Company, Ames, IA.

Joliot V, Boroughs K, Lasserre F, Crochet J, Dambrine G, Smith RE, Perbal B. 1993. Pathogenic potential of myeloblastosis-associated virus: implication of env proteins for osteopetrosis induction. Virology 195:812–819. doi:10.1006/viro.1993.1436. PubMed DOI

Joliot V, Khelifi C, Wyers M, Dambrine G, Lasserre F, Lemercier P, Perbal B. 1996. The noncoding and surface envelope coding sequences of myeloblastosis-associated virus are respectively responsible for nephroblastoma development and renal hyperplasia. J Virol 70:2576–2580. PubMed PMC

Weiss SW, Goldblum JR, Folpe AL. 2007. Malignant vascular tumors, p 703–732. In Weiss SW, Goldblum JR (ed), Enzinger and Weiss's soft tissue tumors, 5th ed Mosby, St. Louis, MO.

Andersen NJ, Froman RE, Kitchell BE, Duesbery NS. 2011. Clinical and molecular biology of angiosarcoma, p 149–174. In Derbel F. (ed), Soft tissue tumors. InTech, Rijeka, Croatia.

International Consensus Group for Hepatocellular Neoplasia. 2009. Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology 49:658–664. doi:10.1002/hep.22709. PubMed DOI

Nakanuma Y, Sato Y, Harada K, Sasaki M, Xu J, Ikeda H. 2010. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J Hepatol 2:419–427. doi:10.4254/wjh.v2.i12.419. PubMed DOI PMC

Uehara T, Pogribny IP, Rusyn I. 2014. The DEN and CCl4-induced mouse model of fibrosis and inflammation-associated hepatocellular carcinoma. Curr Protoc Pharmacol 66:14.30.1–14.30.10. PubMed PMC

Ierardi E, Rosania R, Zotti M, Giorgio F, Prencipe S, Valle ND, Francesco VD, Panella C. 2010. From chronic liver disorders to hepatocellular carcinoma: molecular and genetic pathways. World J Gastrointest Oncol 2:259–264. PubMed PMC

Latimer KS. 1994. Oncology, p 640–672. In Ritchie BW, Harrison GJ, Harrison LR (ed), Avian medicine: principles and application. Wingers Publishing, Lake Worth, FL.

Llovet JM, Burroughs A, Bruix J. 2003. Hepatocellular carcinoma. Lancet 362:1907–1917. doi:10.1016/S0140-6736(03)14964-1. PubMed DOI

Leenders MW, Nijkamp MW, Borel Rinkes IH. 2008. Mouse models in liver cancer research: a review of current literature. World J Gastroenterol 14:6915–6923. doi:10.3748/wjg.14.6915. PubMed DOI PMC

Withers-Ward ES, Kitamura Y, Barnes JP, Coffin JM. 1994. Distribution of targets for avian retrovirus DNA integration in vivo. Genes Dev 82:1473–1487. doi:10.1101/gad.8.12.1473. PubMed DOI

Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD. 2004. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2:e234. doi:10.1371/journal.pbio.0020234. PubMed DOI PMC

Barr SD, Leipzig J, Shinn P, Ecker JR, Bushman FD. 2005. Integration targeting by avian sarcoma-leukosis virus and human immunodeficiency virus in the chicken genome. J Virol 79:12035–12044. doi:10.1128/JVI.79.18.12035-12044.2005. PubMed DOI PMC

Moiani A, Suerth JD, Gandolfi F, Rizzi E, Severgnini M, de Bellis G, Schambach A, Mavilio F. 2014. Genome-wide analysis of alpharetroviral integration in human hematopoietic stem/progenitor cells. Genes 5:415–429. doi:10.3390/genes5020415. PubMed DOI PMC

Pecenka V, Pajer P, Karafiat V, Dvorak M. 2011. Chicken models of retroviral insertional mutagenesis, p 77–112. In Dupuy AJ, Largaespada DA (ed), Insertional mutagenesis strategies in cancer genetics. Springer, New York, NY.

Cheung M, Testa JR. 2013. Diverse mechanisms of AKT pathway activation in human malignancy. Curr Cancer Drug Targets 13:234–244. doi:10.2174/1568009611313030002. PubMed DOI PMC

Angeloni D, Danilkovitch-Miagkova A, Ivanova T, Braga E, Zabarovsky E, Lerman MI. 2007. Hypermethylation of Ron proximal promoter associates with lack of full-length Ron and transcription of oncogenic short-Ron from an internal promoter. Oncogene 26:4499–4512. doi:10.1038/sj.onc.1210238. PubMed DOI

Bardella C, Costa B, Maggiora P, Patane S, Olivero M, Ranzani GN, De Bortoli M, Comoglio PM, Di Renzo MF. 2004. Truncated RON tyrosine kinase drives tumor cell progression and abrogates cell-cell adhesion through E-cadherin transcriptional repression. Cancer Res 64:5154–5161. doi:10.1158/0008-5472.CAN-04-0600. PubMed DOI

Gan HK, Cvrljevic AN, Johns TG. 2013. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J 280:5350–5370. doi:10.1111/febs.12393. PubMed DOI

Pulciani S, Santos E, Long LK, Sorrentino V, Barbacid M. 1985. ras gene amplification and malignant transformation. Mol Cell Biol 5:2836–2841. doi:10.1128/MCB.5.10.2836. PubMed DOI PMC

Suzuki T, Shen H, Akagi K, Morse HC, Malley JD, Naiman DQ, Jenkins NA, Copeland NG. 2002. New genes involved in cancer identified by retroviral tagging. Nat Genet 32:166–174. doi:10.1038/ng949. PubMed DOI

Jeong WJ, Yoon J, Park JC, Lee SH, Lee SH, Kaduwal S, Kim H, Yoon JB, Choi KY. 2012. Ras stabilization through aberrant activation of Wnt/beta-catenin signaling promotes intestinal tumorigenesis. Sci Signal 5:ra30. doi:10.1126/scisignal.2002242. PubMed DOI

Tward AD, Jones KD, Yant S, Cheung ST, Fan ST, Chen X, Kay MA, Wang R, Bishop JM. 2007. Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proc Natl Acad Sci U S A 104:14771–14776. doi:10.1073/pnas.0706578104. PubMed DOI PMC

Maroun CR, Rowlands T. 2014. The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacol Therapeut 142:316–338. doi:10.1016/j.pharmthera.2013.12.014. PubMed DOI

Justice JT, Malhotra S, Ruano M, Li Y, Zavala G, Lee N, Morgan R, Beemon K. 2015. The MET gene is a common integration target in avian leukosis virus subgroup J-induced chicken hemangiomas. J Virol 89:4712–4719. doi:10.1128/JVI.03225-14. PubMed DOI PMC

Lax I, Kris R, Sasson I, Ullrich A, Hayman MJ, Beug H, Schlessinger J. 1985. Activation of c-erbB in avian leukosis virus-induced erythroblastosis leads to the expression of a truncated EGF receptor kinase. EMBO J 4:3179–3182. PubMed PMC

Liu X, Zhao L, Derose YS, Lin YC, Bieniasz M, Eyob H, Buys SS, Neumayer L, Welm AL. 2011. Short-form Ron promotes spontaneous breast cancer metastasis through interaction with phosphoinositide 3-kinase. Genes Cancer 2:753–762. doi:10.1177/1947601911421924. PubMed DOI PMC

Moxley KM, Wang L, Welm AL, Bieniasz M. 2016. Short-form Ron is a novel determinant of ovarian cancer initiation and progression. Genes Cancer 7:169–181. PubMed PMC

Huff JL, Jelinek MA, Borgman CA, Lansing TJ, Parsons JT. 1993. The protooncogene c-sea encodes a transmembrane protein-tyrosine kinase related to the Met/hepatocyte growth factor/scatter factor receptor. Proc Natl Acad Sci U S A 90:6140–6144. doi:10.1073/pnas.90.13.6140. PubMed DOI PMC

Plachy J, Hala K. 1997. Comparative aspects of the chicken immunogenetics (review). Folia Biol (Praha) 43:133–151. PubMed

Pecenka V, Dvorak M, Karafiat V, Sloncova E, Hlozanek I, Travnicek M, Riman J. 1988. Avian nephroblastomas induced by a retrovirus (MAV-2) lacking oncogene. II. Search for common sites of proviral integration in tumour DNA. Folia Biol (Praha) 34:147–169. PubMed

National Institutes of Health. 1985. Guide for the care and use of laboratory animals. National Institutes of Health, Bethesda, MD.

. 1995. Terminology of nodular hepatocellular lesions. Hepatology 22:983–993. PubMed

Raines MA, Lewis WG, Crittenden LB, Kung HJ. 1985. c-erbB activation in avian leukosis virus-induced erythroblastosis: clustered integration sites and the arrangement of provirus in the c-erbB alleles. Proc Natl Acad Sci U S A 82:2287–2291. doi:10.1073/pnas.82.8.2287. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace