Striking Impact of Solvent Polarity on the Strength of Hydrogen-Bonded Complexes: A Nexus Between Theory and Experiment

. 2025 Mar 17 ; 64 (12) : e202422594. [epub] 20250107

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39714343

Grantová podpora
22-15374S Grantová Agentura České Republiky
24-10558S Grantová Agentura České Republiky
CZ.10.03.01/00/22_003/0000048 REFRESH - Research Excellence for Region Sustainability and High-tech Industries
IGA_PrF_2024_017 Univerzita Palackého v Olomouci

The binding free energy of hydrogen-bonded complexes is generally inversely proportional to the solvent dielectric constant. This occurs because the solvent-accessible surface area of the complex is always smaller than that of the individual subsystems, leading to a reduction in solvation energy. The present study explores the potential for stabilizing hydrogen-bonded complexes in a solvent with higher polarity. Contrary to the established understanding, we have demonstrated that the hydrogen-bonded complex (CH3CH2COOH⋅⋅⋅2,4,6-trimethylpyridine) can be better stabilized in a solvent with higher polarity. In this case, a significant charge transfer between the subsystems results in an increased dipole moment of the complex, leading to its stabilization in a more polar solvent. The expected inverse relationship between binding free energy and solvent dielectric constant is observed when the charge transfer between the subsystems is low. Thus, the magnitude of the charge transfer between subsystems is possibly the key factor in determining the stabilization or destabilization of H-bonded complexes in different solvents. Here, we present a comprehensive study that combines experimental and theoretical approaches, including nuclear magnetic resonance (NMR), infrared (IR) spectroscopies and quantum chemical calculations to validate the findings.

Zobrazit více v PubMed

IUPAC. Compendium of Chemical Terminology, 2nd ed. (“Gold Book” the) (Eds.: A. D. McNaught, A. Wilkinson), Blackwell Scientific Publications, Oxford: 1997.

Coulson C. A., Res. Appl. Ind. 1957, 149, 10.

Arunan E., Desiraju G. R., Klein R. A., Sadlej J., Scheiner S., Alkorta I., Clary D. C., Crabtree R. H., Dannenberg J. J., Hobza P., Kjaergaard H. G., Legon A. C., Mennucci B., Nesbitt D. J., Pure Appl. Chem. 2011, 83, 1619–1636.

Arunan E., Desiraju G. R., Klein R. A., Sadlej J., Scheiner S., Alkorta I., Clary D. C., Crabtree R. H., Dannenberg J. J., Hobza P., Kjaergaard H. G., Legon A. C., Mennucci B., Nesbitt D. J., Pure Appl. Chem. 2011, 83, 1637–1641.

Weinhold F., Klein R. A., Mol. Phys. 2012, 110, 565–579.

Pauling L., The Nature of the Chemical Bond , 3rd ed., Cornell University Press, Ithaca: 1960.

Coulson C. A., in Hydrogen Bonding (Eds.: Hadzi D., Thompson H. W.), Pergamon Press, London: 1959, pp. 339–360 and references therein.

Tsubomura H., Bull. Chem. Soc. Jpn. 1954, 27, 445–450.

Iddon B., Hunter C. A., J. Am. Chem. Soc. 2024, 146, 28580–28588. PubMed PMC

Dominelli-Whiteley N., Brown J. J., Muchowska K. B., Mati I. K., Adam C., Hubbard T. A., Elmi A., Brown A. J., Bell I. A. W., Cockroft S. L., Angew. Chem. 2017, 129, 7766–7770. PubMed PMC

Soloviev D. O., Hanna F. E., Misuraca M. C., Hunter C. A., Chem. Sci. 2022, 13, 11863–11868. PubMed PMC

Trevisan L., Bond A. D., Hunter C. A., J. Am. Chem. Soc. 2022, 144, 19499–19507. PubMed PMC

Driver M. D., Williamson M. J., Cook J. L., Hunter C. A., Chem. Sci. 2020, 11, 4456–4466. PubMed PMC

Cook J. L., Hunter C. A., Low C. M. R., Perez-Velasco A., Vinter J. G., Angew. Chem. Int. Ed. 2007, 46, 3706–3709. PubMed

Aquino A. J. A., Tunega D., Haberhauer G., Gerzabek M. H., Lischka H., J. Phys. Chem. A 2002, 106, 1862–1871.

Robertson C. C., Wright J. S., Carrington E. J., Perutz R. N., Hunter C. A., Brammer L., Chem. Sci. 2017, 8, 5392–5398. PubMed PMC

Zuo J., Zhao B., Guo H., Xie D., Phys. Chem. Chem. Phys. 2017, 19, 9770–9777. PubMed

Wang J., Shao L., Yan P., Liu C., Liu X., Zhang X. M., J. Phys. Org. Chem. 2019, 32, e3912.

Hunter C. A., Angew. Chem. Int. Ed. 2004, 43, 5310–5324. PubMed

Cabot R., Hunter C. A., Chem. Commun. 2009, 2005–2007. PubMed

Meredith N. Y., Borsley S., Smolyar I. V., Nichol G. S., Baker C. M., Ling K. B., Cockroft S. L., Angew. Chem. Int. Ed. 2022, 61, e202206604. PubMed PMC

Burns R. J., Mati I. K., Muchowska K. B., Adam C., Cockroft S. L., Angew. Chem. Int. Ed. 2020, 59, 16717–16724. PubMed PMC

R. Lo, D. Manna, M. Lamanec, M. Dračínský, P. Bouř, T. Wu, G. Bastien, J. Kaleta, V. M. Miriyala, V. Špirko, A. Mašínová, D. Nachtigallová, P. Hobza, Nat. Commun. 2022, 13, 2107 (1–7). PubMed PMC

Lo R., Manna D., Lamanec M., Wang W., Bakandritsos A., Dračínský M., Zbořil R., Nachtigallová D., Hobza P., J. Am. Chem. Soc. 2021, 143, 10930–10939. PubMed

Lamanec M., Lo R., Nachtigallová D., Bakandritsos A., Mohammadi E., Dračínský M., Zbořil R., Hobza P., Wang W., Angew. Chem. Int. Ed. 2021, 60, 1942–1950. PubMed

Lo R., Mašínová A., Lamanec M., Nachtigallová D., Hobza P., J. Comput. Chem. 2023, 44, 329–333. PubMed

Miriyala V. M., Lo R., Bouř P., Wu T., Nachtigallová D., Hobza P., J. Phys. Chem. A 2022, 126, 7938–7943. PubMed

Lo R., Lamanec M., Wang W., Manna D., Bakandritsos A., Dračínský M., Zbořil R., Nachtigallová D., Hobza P., Phys. Chem. Chem. Phys. 2021, 23, 4365–4375. PubMed

Lo R., Manna D., Hobza P., Chem. Commun. 2021, 57, 3363–3366. PubMed

Lo R., Manna D., Hobza P., J. Phys. Chem. A. 2021, 125, 2923–2931. PubMed

Lo R., Manna D., Hobza P., Chem. Commun. 2022, 58, 1045–1048. PubMed

Lo R., Manna D., Miriyala V. M., Nachtigallová D., Hobza P., Phys. Chem. Chem. Phys. 2023, 25, 25961–25964. PubMed

Manna D., Lo R., Nachtigallová D., Trávníček Z., Hobza P., Chem. Eur. J. 2023, 29, e202300635. PubMed

Manna D., Lo R., Miriyala V. M., Nachtigallová D., Trávníček Z., Hobza P., J. Comput. Chem. 2024, 45, 204–209. PubMed

Manna D., Lo R., Vacek J., Miriyala V. M., Bouř P., Wu T., Osifová Z., Nachtigallová D., Dračínský M., Hobza P., Angew. Chem. Int. Ed. 2024, 63, e202403218. PubMed

Barrow G. M., J. Am. Chem. Soc. 1956, 78, 5802–5806.

Lemmerer A., Govindraju S., Johnston M., Motloung X., Savig K. L., CrystEngComm 2015, 17, 3591–3595.

Cruz-Cabeza A. J., CrystEngComm 2012, 4, 6362–6365.

Štoček J. R., Socha O., Císařová I., Slanina T., Dračínský M., J. Am. Chem. Soc. 2022, 144, 7111–7116. PubMed

Blahut J., Štoček J. R., Šála M., Dračínský M., J. Magn. Reson. 2022, 345, 107334. PubMed

Štoček J. R., Blahut J., Chalupná S., Čejka J., Štěpánová S., Kašička V., Hušák M., Dračínský M., Chem. Eur. J. 2024, 30, e202402946. PubMed

Adamo C., Barone V., J. Chem. Phys. 1999, 110, 6158–6170.

Grimme S., Antony J., Ehrlich S., Krieg H. A., J. Chem. Phys. 2010, 132, 154104. PubMed

Weigend F., Ahlrichs R., Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. PubMed

Mardirossian N., Head-Gordon M., J. Chem. Phys. 2016, 144, 214110. PubMed

Li Y., Gomes J., Sharada S. M., Bell A. T., Head-Gordon M., J. Phys. Chem. C 2015, 119, 1840–1850.

Klamt A., Schüürmann G., J. Chem. Soc. Perkin Trans. 2 1993, 2, 799–805.

Marenich A. V., Cramer C. J., Truhlar D. G., J. Phys. Chem. B. 2009, 113, 6378–6396. PubMed

Cossi M., Rega N., Scalmani G., Barone V., J. Comput. Chem. 2003, 24, 669–681. PubMed

Hirshfeld F. L., Theor. Chem. Acc. 1977, 44,129.

Löwdin P.-O., J. Chem. Phys. 1950, 18, 365.

Hadad C., Florez E., Acelas N., Merino G., Restreppo A., Int. J. Quantum Chem. 2019, 119, e25766. PubMed

Simm G. N., Türtscher P. L., Reiher M., J. Comput. Chem. 2020, 41, 1144–1145. PubMed

Basdogan Y., Groenenboom M. C., Henderson E., De S., Rempe S. B., Keith J. A., J. Chem. Theory Comput. 2020, 16, 633–642. PubMed

Krieger A. M., Sinha V., Li G., Pidko E. A., Organometallics 2022, 41, 1829–1835. PubMed PMC

Dub P. A., Ikariya T., J. Am. Chem. Soc. 2013, 135, 2604–2619. PubMed

Svensson M., Humbel S., Froese R. D., Matsubara T., Sieber S., Morokuma K., J. Phys. Chem. 1996, 100, 19357–19363.

Murmann R. K., Basolo F., J. Am. Chem. Soc. 1955, 77, 3484–3486.

Andon R. J. L., Cox J. D., Herington E. F. G., Trans. Faraday Soc. 1954, 50, 918–927.

Rourke C. E., Clapp L. B., Edwards J. O., J. Am. Chem. Soc. 1956, 78, 2159.

Hoerr C. W., McCorkle M. R., Ralston A. W., J. Am. Chem. Soc. 1943, 65, 328–329.

Hall H. K., J. Am. Chem. Soc. 1957, 79, 5441–5444.

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., J. A. Montgomery  Jr. , Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian 16 Rev.C.01, Wallingford, CT: 2016.

Neese F., WIREs Comput. Mol. Sci. 2022, 12, e1606.

Reed A. E., Curtiss L. A., Weinhold F., Chem. Rev. 1988, 88, 899–926.

Kaduk B., Kowalczyk T., Van Voorhis T., Chem. Rev. 2012, 112, 321 and references therein. PubMed

Apra E., Bylaska E. J., De Jong W. A., Govind N., Kowalski K., Straatsma T. P., Valiev M., van Dam H., Alexeev Y., Anchell J., et al. J. Chem. Phys. 2020, 152, 184102. PubMed

Kresse G., Furthmüller J., Comput. Mater. Sci. 1996, 6, 15–50.

Kresse G., Joubert D., Phys. Rev. B 1999, 59, 1758.

Grimme S., Ehrlich S., Goerigk L., J. Comput. Chem. 2011, 32, 1456–1465. PubMed

Schneider J., Hamaekers J., Chill S. T., Smidstrup S., Bulin J., Thesen R., Blom A., Stokbro K., Modell. Simul. Mater. Sci. Eng. 2017, 25, 085007.

Smidstrup S., Markussen T., Vancraeyveld P., Wellendorff J., Schneider J., Gunst T., Verstichel B., Stradi D., Khomyakov P. A., Vej-Hansen U. G., J. Phys. Condens. Matter 2020, 32, 015901. PubMed

Parrinello M., Rahman A., Phys. Rev. Lett. 1980, 45, 1196–1199.

Parrinello M., Rahman A., J. Appl. Phys. 1981, 52, 7182–7190.

Allen M. P., Tildesley D. J., Computer simulation of liquids (Oxford university press: New York; 1991).

Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. 1996, 77, 3865. PubMed

Galib M., Hanna G., J. Phys. Chem. B 2011, 115, 15024–15035. PubMed

S. Biswas, B. M. Wong, J. Mol. Liq. 2021, 330, 115624 (1–9).

Laio A., Parrinello M., Proc. Natl. Acad. Sci. USA 2002, 99, 12562–12566. PubMed PMC

Iannuzzi M., Laio A., Parrinello M., Phys. Rev. Lett. 2003, 90, 238302. PubMed

Andersen H. C., J. Chem. Phys. 1980, 72, 2384–2393.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...