Striking Impact of Solvent Polarity on the Strength of Hydrogen-Bonded Complexes: A Nexus Between Theory and Experiment
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
22-15374S
Grantová Agentura České Republiky
24-10558S
Grantová Agentura České Republiky
CZ.10.03.01/00/22_003/0000048
REFRESH - Research Excellence for Region Sustainability and High-tech Industries
IGA_PrF_2024_017
Univerzita Palackého v Olomouci
PubMed
39714343
PubMed Central
PMC11914941
DOI
10.1002/anie.202422594
Knihovny.cz E-zdroje
- Klíčová slova
- Hydrogen bonding, IR, Metadynamics, Micro-solvation, NMR, ONIOM, Solvent effect,
- Publikační typ
- časopisecké články MeSH
The binding free energy of hydrogen-bonded complexes is generally inversely proportional to the solvent dielectric constant. This occurs because the solvent-accessible surface area of the complex is always smaller than that of the individual subsystems, leading to a reduction in solvation energy. The present study explores the potential for stabilizing hydrogen-bonded complexes in a solvent with higher polarity. Contrary to the established understanding, we have demonstrated that the hydrogen-bonded complex (CH3CH2COOH⋅⋅⋅2,4,6-trimethylpyridine) can be better stabilized in a solvent with higher polarity. In this case, a significant charge transfer between the subsystems results in an increased dipole moment of the complex, leading to its stabilization in a more polar solvent. The expected inverse relationship between binding free energy and solvent dielectric constant is observed when the charge transfer between the subsystems is low. Thus, the magnitude of the charge transfer between subsystems is possibly the key factor in determining the stabilization or destabilization of H-bonded complexes in different solvents. Here, we present a comprehensive study that combines experimental and theoretical approaches, including nuclear magnetic resonance (NMR), infrared (IR) spectroscopies and quantum chemical calculations to validate the findings.
Zobrazit více v PubMed
IUPAC. Compendium of Chemical Terminology, 2nd ed. (“Gold Book” the) (Eds.: A. D. McNaught, A. Wilkinson), Blackwell Scientific Publications, Oxford: 1997.
Coulson C. A., Res. Appl. Ind. 1957, 149, 10.
Arunan E., Desiraju G. R., Klein R. A., Sadlej J., Scheiner S., Alkorta I., Clary D. C., Crabtree R. H., Dannenberg J. J., Hobza P., Kjaergaard H. G., Legon A. C., Mennucci B., Nesbitt D. J., Pure Appl. Chem. 2011, 83, 1619–1636.
Arunan E., Desiraju G. R., Klein R. A., Sadlej J., Scheiner S., Alkorta I., Clary D. C., Crabtree R. H., Dannenberg J. J., Hobza P., Kjaergaard H. G., Legon A. C., Mennucci B., Nesbitt D. J., Pure Appl. Chem. 2011, 83, 1637–1641.
Weinhold F., Klein R. A., Mol. Phys. 2012, 110, 565–579.
Pauling L., The Nature of the Chemical Bond , 3rd ed., Cornell University Press, Ithaca: 1960.
Coulson C. A., in Hydrogen Bonding (Eds.: Hadzi D., Thompson H. W.), Pergamon Press, London: 1959, pp. 339–360 and references therein.
Tsubomura H., Bull. Chem. Soc. Jpn. 1954, 27, 445–450.
Iddon B., Hunter C. A., J. Am. Chem. Soc. 2024, 146, 28580–28588. PubMed PMC
Dominelli-Whiteley N., Brown J. J., Muchowska K. B., Mati I. K., Adam C., Hubbard T. A., Elmi A., Brown A. J., Bell I. A. W., Cockroft S. L., Angew. Chem. 2017, 129, 7766–7770. PubMed PMC
Soloviev D. O., Hanna F. E., Misuraca M. C., Hunter C. A., Chem. Sci. 2022, 13, 11863–11868. PubMed PMC
Trevisan L., Bond A. D., Hunter C. A., J. Am. Chem. Soc. 2022, 144, 19499–19507. PubMed PMC
Driver M. D., Williamson M. J., Cook J. L., Hunter C. A., Chem. Sci. 2020, 11, 4456–4466. PubMed PMC
Cook J. L., Hunter C. A., Low C. M. R., Perez-Velasco A., Vinter J. G., Angew. Chem. Int. Ed. 2007, 46, 3706–3709. PubMed
Aquino A. J. A., Tunega D., Haberhauer G., Gerzabek M. H., Lischka H., J. Phys. Chem. A 2002, 106, 1862–1871.
Robertson C. C., Wright J. S., Carrington E. J., Perutz R. N., Hunter C. A., Brammer L., Chem. Sci. 2017, 8, 5392–5398. PubMed PMC
Zuo J., Zhao B., Guo H., Xie D., Phys. Chem. Chem. Phys. 2017, 19, 9770–9777. PubMed
Wang J., Shao L., Yan P., Liu C., Liu X., Zhang X. M., J. Phys. Org. Chem. 2019, 32, e3912.
Hunter C. A., Angew. Chem. Int. Ed. 2004, 43, 5310–5324. PubMed
Cabot R., Hunter C. A., Chem. Commun. 2009, 2005–2007. PubMed
Meredith N. Y., Borsley S., Smolyar I. V., Nichol G. S., Baker C. M., Ling K. B., Cockroft S. L., Angew. Chem. Int. Ed. 2022, 61, e202206604. PubMed PMC
Burns R. J., Mati I. K., Muchowska K. B., Adam C., Cockroft S. L., Angew. Chem. Int. Ed. 2020, 59, 16717–16724. PubMed PMC
R. Lo, D. Manna, M. Lamanec, M. Dračínský, P. Bouř, T. Wu, G. Bastien, J. Kaleta, V. M. Miriyala, V. Špirko, A. Mašínová, D. Nachtigallová, P. Hobza, Nat. Commun. 2022, 13, 2107 (1–7). PubMed PMC
Lo R., Manna D., Lamanec M., Wang W., Bakandritsos A., Dračínský M., Zbořil R., Nachtigallová D., Hobza P., J. Am. Chem. Soc. 2021, 143, 10930–10939. PubMed
Lamanec M., Lo R., Nachtigallová D., Bakandritsos A., Mohammadi E., Dračínský M., Zbořil R., Hobza P., Wang W., Angew. Chem. Int. Ed. 2021, 60, 1942–1950. PubMed
Lo R., Mašínová A., Lamanec M., Nachtigallová D., Hobza P., J. Comput. Chem. 2023, 44, 329–333. PubMed
Miriyala V. M., Lo R., Bouř P., Wu T., Nachtigallová D., Hobza P., J. Phys. Chem. A 2022, 126, 7938–7943. PubMed
Lo R., Lamanec M., Wang W., Manna D., Bakandritsos A., Dračínský M., Zbořil R., Nachtigallová D., Hobza P., Phys. Chem. Chem. Phys. 2021, 23, 4365–4375. PubMed
Lo R., Manna D., Hobza P., Chem. Commun. 2021, 57, 3363–3366. PubMed
Lo R., Manna D., Hobza P., J. Phys. Chem. A. 2021, 125, 2923–2931. PubMed
Lo R., Manna D., Hobza P., Chem. Commun. 2022, 58, 1045–1048. PubMed
Lo R., Manna D., Miriyala V. M., Nachtigallová D., Hobza P., Phys. Chem. Chem. Phys. 2023, 25, 25961–25964. PubMed
Manna D., Lo R., Nachtigallová D., Trávníček Z., Hobza P., Chem. Eur. J. 2023, 29, e202300635. PubMed
Manna D., Lo R., Miriyala V. M., Nachtigallová D., Trávníček Z., Hobza P., J. Comput. Chem. 2024, 45, 204–209. PubMed
Manna D., Lo R., Vacek J., Miriyala V. M., Bouř P., Wu T., Osifová Z., Nachtigallová D., Dračínský M., Hobza P., Angew. Chem. Int. Ed. 2024, 63, e202403218. PubMed
Barrow G. M., J. Am. Chem. Soc. 1956, 78, 5802–5806.
Lemmerer A., Govindraju S., Johnston M., Motloung X., Savig K. L., CrystEngComm 2015, 17, 3591–3595.
Cruz-Cabeza A. J., CrystEngComm 2012, 4, 6362–6365.
Štoček J. R., Socha O., Císařová I., Slanina T., Dračínský M., J. Am. Chem. Soc. 2022, 144, 7111–7116. PubMed
Blahut J., Štoček J. R., Šála M., Dračínský M., J. Magn. Reson. 2022, 345, 107334. PubMed
Štoček J. R., Blahut J., Chalupná S., Čejka J., Štěpánová S., Kašička V., Hušák M., Dračínský M., Chem. Eur. J. 2024, 30, e202402946. PubMed
Adamo C., Barone V., J. Chem. Phys. 1999, 110, 6158–6170.
Grimme S., Antony J., Ehrlich S., Krieg H. A., J. Chem. Phys. 2010, 132, 154104. PubMed
Weigend F., Ahlrichs R., Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. PubMed
Mardirossian N., Head-Gordon M., J. Chem. Phys. 2016, 144, 214110. PubMed
Li Y., Gomes J., Sharada S. M., Bell A. T., Head-Gordon M., J. Phys. Chem. C 2015, 119, 1840–1850.
Klamt A., Schüürmann G., J. Chem. Soc. Perkin Trans. 2 1993, 2, 799–805.
Marenich A. V., Cramer C. J., Truhlar D. G., J. Phys. Chem. B. 2009, 113, 6378–6396. PubMed
Cossi M., Rega N., Scalmani G., Barone V., J. Comput. Chem. 2003, 24, 669–681. PubMed
Hirshfeld F. L., Theor. Chem. Acc. 1977, 44,129.
Löwdin P.-O., J. Chem. Phys. 1950, 18, 365.
Hadad C., Florez E., Acelas N., Merino G., Restreppo A., Int. J. Quantum Chem. 2019, 119, e25766. PubMed
Simm G. N., Türtscher P. L., Reiher M., J. Comput. Chem. 2020, 41, 1144–1145. PubMed
Basdogan Y., Groenenboom M. C., Henderson E., De S., Rempe S. B., Keith J. A., J. Chem. Theory Comput. 2020, 16, 633–642. PubMed
Krieger A. M., Sinha V., Li G., Pidko E. A., Organometallics 2022, 41, 1829–1835. PubMed PMC
Dub P. A., Ikariya T., J. Am. Chem. Soc. 2013, 135, 2604–2619. PubMed
Svensson M., Humbel S., Froese R. D., Matsubara T., Sieber S., Morokuma K., J. Phys. Chem. 1996, 100, 19357–19363.
Murmann R. K., Basolo F., J. Am. Chem. Soc. 1955, 77, 3484–3486.
Andon R. J. L., Cox J. D., Herington E. F. G., Trans. Faraday Soc. 1954, 50, 918–927.
Rourke C. E., Clapp L. B., Edwards J. O., J. Am. Chem. Soc. 1956, 78, 2159.
Hoerr C. W., McCorkle M. R., Ralston A. W., J. Am. Chem. Soc. 1943, 65, 328–329.
Hall H. K., J. Am. Chem. Soc. 1957, 79, 5441–5444.
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., J. A. Montgomery Jr. , Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian 16 Rev.C.01, Wallingford, CT: 2016.
Neese F., WIREs Comput. Mol. Sci. 2022, 12, e1606.
Reed A. E., Curtiss L. A., Weinhold F., Chem. Rev. 1988, 88, 899–926.
Kaduk B., Kowalczyk T., Van Voorhis T., Chem. Rev. 2012, 112, 321 and references therein. PubMed
Apra E., Bylaska E. J., De Jong W. A., Govind N., Kowalski K., Straatsma T. P., Valiev M., van Dam H., Alexeev Y., Anchell J., et al. J. Chem. Phys. 2020, 152, 184102. PubMed
Kresse G., Furthmüller J., Comput. Mater. Sci. 1996, 6, 15–50.
Kresse G., Joubert D., Phys. Rev. B 1999, 59, 1758.
Grimme S., Ehrlich S., Goerigk L., J. Comput. Chem. 2011, 32, 1456–1465. PubMed
Schneider J., Hamaekers J., Chill S. T., Smidstrup S., Bulin J., Thesen R., Blom A., Stokbro K., Modell. Simul. Mater. Sci. Eng. 2017, 25, 085007.
Smidstrup S., Markussen T., Vancraeyveld P., Wellendorff J., Schneider J., Gunst T., Verstichel B., Stradi D., Khomyakov P. A., Vej-Hansen U. G., J. Phys. Condens. Matter 2020, 32, 015901. PubMed
Parrinello M., Rahman A., Phys. Rev. Lett. 1980, 45, 1196–1199.
Parrinello M., Rahman A., J. Appl. Phys. 1981, 52, 7182–7190.
Allen M. P., Tildesley D. J., Computer simulation of liquids (Oxford university press: New York; 1991).
Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. 1996, 77, 3865. PubMed
Galib M., Hanna G., J. Phys. Chem. B 2011, 115, 15024–15035. PubMed
S. Biswas, B. M. Wong, J. Mol. Liq. 2021, 330, 115624 (1–9).
Laio A., Parrinello M., Proc. Natl. Acad. Sci. USA 2002, 99, 12562–12566. PubMed PMC
Iannuzzi M., Laio A., Parrinello M., Phys. Rev. Lett. 2003, 90, 238302. PubMed
Andersen H. C., J. Chem. Phys. 1980, 72, 2384–2393.