The Existence of a N→C Dative Bond in the C60 -Piperidine Complex
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
21773104
National Science Foundation of China
IGA_PrF_2020_022
Univerzita Palackého v Olomouci
19-27454X
Grantová Agentura České Republiky
18-11851S
Grantová Agentura České Republiky
No. CZ.02.1.01/0.0/0.0/16_019/0000754
ERDF-ESF "Nano 4 Future"
PubMed
33022841
DOI
10.1002/anie.202012851
Knihovny.cz E-zdroje
- Klíčová slova
- N→C dative bonds, covalent functionalization, fullerenes, hydrogen bonds, piperidine,
- Publikační typ
- časopisecké články MeSH
The complexes formed between carbon allotropes (C20 , C60 fullerenes, graphene, and single-wall carbon nanotubes) and piperidine have been investigated by means of computational quantum chemical and experimental IR and NMR techniques. Alongside hydrogen bonds, the C⋅⋅⋅N tetrel bond, and lone-pair⋅⋅⋅π interactions, the unexpected N→C dative/covalent bond has been detected solely in complexes of fullerenes with piperidine. Non-planarity and five-member rings of carbon allotropes represent the key structural prerequisites for the unique formation of a dative N→C bond. The results of thermodynamics calculations, molecular dynamics simulations, and NMR and FTIR spectroscopy explain the specific interactions between C60 and piperidine. The differences in behavior of individual carbon allotropes in terms of dative bonding formation brings a new insight into their controllable organic functionalization.
Zobrazit více v PubMed
E. De Gianni, E. Turrini, A. Milelli, F. Maffei, M. Carini, A. Minarini, V. Tumiatti, T. Da Ros, M. Prato, C. Fimognari, Toxins 2015, 7, 535-552.
C. M. Sayes, A. M. Gobin, K. D. Ausman, J. Mendez, J. L. West, V. L. Colvin, Biomaterials 2005, 26, 7587-7595.
N. Gharbi, M. Pressac, M. Hadchouel, H. Szwarc, S. R. Wilson, F. Moussa, Nano Lett. 2005, 5, 2578-2585.
K. A. Mazzio, C. K. Luscombe, Chem. Soc. Rev. 2015, 44, 78-90.
W. Cao, J. Xue, Energy Environ. Sci. 2014, 7, 2123-2144.
S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324-1338.
M. Saito, H. Shinokubo, H. Sakurai, Mater. Chem. Front. 2018, 2, 635-661.
D. L. Huang, P. D. Dau, H. T. Liu, L. S. Wang, J. Chem. Phys. 2014, 140, 224315.
J. Luo, L. M. Peng, Z. Q. Xue, J. L. Wu, J. Chem. Phys. 2004, 120, 7998-8001.
N. O. Mchedlov-Petrossyan, Theor. Exp. Chem. 2020, 55, 361-391.
R. S. Ruoff, R. Malhotra, D. L. Huestis, D. S. Tse, D. C. Lorents, Nature 1993, 362, 140-141.
N. O. McHedlov-Petrossyan, J. Mol. Liq. 2011, 161, 1-12.
N. O. McHedlov-Petrossyan, Chem. Rev. 2013, 113, 5149-5193.
R. S. Ruoff, D. S. Tse, R. Malhotra, D. C. Lorents, J. Phys. Chem. 1993, 97, 3379-3383.
M. V. Korobov, A. L. Mirakyan, N. V. Avramenko, G. Olofsson, A. L. Smith, R. S. Ruoff, J. Phys. Chem. B 1999, 103, 1339-1346.
K. N. Semenov, N. A. Charykov, V. A. Keskinov, A. K. Piartman, A. A. Blokhin, A. A. Kopyrin, J. Chem. Eng. Data 2010, 55, 13-36.
F. Cataldo, Fullerenes Nanotubes Carbon Nanostruct. 2009, 17, 79-84.
J. S. Peerless, G. H. Bowers, A. L. Kwansa, Y. G. Yingling, J. Phys. Chem. B 2015, 119, 15344-15352.
M. M. Li, Y. B. Wang, Y. Zhang, W. Wang, J. Phys. Chem. A 2016, 120, 5766-5772.
M. T. Beck, G. Mándi, Fuller. Sci. Technol. 1997, 5, 291-310.
S. Talukdar, P. Pradhan, A. Banerji, Fuller. Sci. Technol. 1997, 5, 547-557.
D. Mahdaoui, M. Abderrabba, C. Hirata, T. Wakahara, K. Miyazawa, J. Solution Chem. 2016, 45, 1158-1170.
G. Schick, K. D. Kampe, A. Hirsch, J. Chem. Soc. Chem. Commun. 1995, 2023-2024.
A. Hirsch, Q. Li, F. Wudl, Angew. Chem. Int. Ed. Engl. 1991, 30, 1309-1310;
Angew. Chem. 1991, 103, 1339-1341.
Y. Li, L. Gan, J. Org. Chem. 2014, 79, 8912-8916.
C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158-6170.
K. N. Semenov, N. A. Charykov, I. V. Vorotyntsev, Russ. J. Phys. Chem. A 2015, 89, 1206-1210.
H. Isobe, N. Tomita, E. Nakamura, Org. Lett. 2000, 2, 3663-3665.
L. Zhao, M. Hermann, N. Holzmann, G. Frenking, Coord. Chem. Rev. 2017, 344, 163-204.
T. Clark, J. S. Murray, P. Politzer, Phys. Chem. Chem. Phys. 2018, 20, 30076-30082.
E. F. Sheka, J. Struct. Chem. 2006, 47, 593-599.
R. Ghiasi, M. Z. Fashami, A. H. Hakimioun, J. Theor. Comput. Chem. 2014, 13, 1450023.
A. Haaland, Angew. Chem. Int. Ed. Engl. 1989, 28, 992-1007;
Angew. Chem. 1989, 101, 1017-1032.
C. J. Cramer, W. L. Gladfelter, Inorg. Chem. 1997, 36, 5358-5362.
C. Lepetit, V. Maraval, Y. Canac, R. Chauvin, Coord. Chem. Rev. 2016, 308, 59-75.
H. Braunschweig, R. D. Dewhurst, L. Pentecost, K. Radacki, A. Vargas, Q. Ye, Angew. Chem. Int. Ed. 2016, 55, 436-440;
Angew. Chem. 2016, 128, 447-451.
U. B. Demirci, Int. J. Hydrogen Energy 2017, 42, 9978-10013.
M. Fu, S. Pan, L. Zhao, G. Frenking, J. Phys. Chem. A 2020, 124, 1087-1092.
M. L. Green, P. Jean, M. C. Heaven, J. Phys. Chem. Lett. 2018, 9, 1999-2002.
C. F. Pupim, A. J. L. Catão, A. López-Castillo, J. Mol. Model. 2018, 24, 283.
A. Nandi, S. Kozuch, Chem. Eur. J. 2020, 26, 759-772.
A. Bauzá, T. J. Mooibroek, A. Frontera, Angew. Chem. Int. Ed. 2013, 52, 12317-12321;
Angew. Chem. 2013, 125, 12543-12547.
A. M. S. Riel, R. K. Rowe, E. N. Ho, A. C. C. Carlsson, A. K. Rappé, O. B. Berryman, P. S. Ho, Acc. Chem. Res. 2019, 52, 2870-2880.
G. A. Jeffrey, Crystallogr. Rev. 2003, 9, 135-176.
T. E. Shubina, D. I. Sharapa, C. Schubert, D. Zahn, M. Halik, P. A. Keller, S. G. Pyne, S. Jennepalli, D. M. Guldi, T. Clark, J. Am. Chem. Soc. 2014, 136, 10890-10893.
P. Larkin, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, 2011, Elsevier, Waltham, MA, USA.
Y. S. Mary, H. T. Varghese, C. Y. Panicker, M. Girisha, B. K. Sagar, H. S. Yathirajan, A. A. Al-Saadi, C. Van Alsenoy, Spectrochim. Acta Part A 2015, 150, 543-556.
E. D. Raczyńska, M. Hallman, K. Kolczyńska, T. M. Stepniewski, Symmetry 2010, 2, 1485-1509.
The stability of covalent dative bond significantly increases with increasing solvent polarity