The stability of covalent dative bond significantly increases with increasing solvent polarity

. 2022 Apr 19 ; 13 (1) : 2107. [epub] 20220419

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35440662
Odkazy

PubMed 35440662
PubMed Central PMC9018688
DOI 10.1038/s41467-022-29806-3
PII: 10.1038/s41467-022-29806-3
Knihovny.cz E-zdroje

It is generally expected that a solvent has only marginal effect on the stability of a covalent bond. In this work, we present a combined computational and experimental study showing a surprising stabilization of the covalent/dative bond in Me3NBH3 complex with increasing solvent polarity. The results show that for a given complex, its stability correlates with the strength of the bond. Notably, the trends in calculated changes of binding (free) energies, observed with increasing solvent polarity, match the differences in the solvation energies (ΔEsolv) of the complex and isolated fragments. Furthermore, the studies performed on the set of the dative complexes, with different atoms involved in the bond, show a linear correlation between the changes of binding free energies and ΔEsolv. The observed data indicate that the ionic part of the combined ionic-covalent character of the bond is responsible for the stabilizing effects of solvents.

Zobrazit více v PubMed

Hwang K-J, et al. The influence of dielectric constant on ionic and non-polar interactions. Bull. Korean Chem. Soc. 2003;24:55–59. doi: 10.5012/bkcs.2003.24.1.055. DOI

Mc Keen, L. W. Film Properties of Plastics and Elastomers, Introduction to Properties of Plastic and Elastomer Films 3rd edn (Elsevier, 2012).

Lewis, G. N. Valence and the Structure of Atoms and Molecules (The Chemical Catalog Company, 1923).

Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals 3rd edn (Cornell University, 1938).

Haaland A. Covalent versus dative bonds to main group metals, a useful distinction. Angew. Chem. Int. Ed. 1989;28:992–1007. doi: 10.1002/anie.198909921. DOI

Zhao L, Hermann M, Holzmann N, Frenking G. Dative bonding in main group compounds. Coord. Chem. Rev. 2017;344:163–204. doi: 10.1016/j.ccr.2017.03.026. DOI

Zhao L, Pan S, Holzmann N, Schwerdtfeger P, Frenking G. Chemical bonding and bonding models of main-group compounds. Chem. Rev. 2019;119:8781–8845. doi: 10.1021/acs.chemrev.8b00722. PubMed DOI

Frenking G, Hermann M, Andrada DM, Holzmann N. Donor–acceptor bonding in novel low-coordinated compounds of boron and group-14 atoms C–Sn. Chem. Soc. Rev. 2016;45:1129–1144. doi: 10.1039/C5CS00815H. PubMed DOI

Zhao, L., Zhi, M. & Frenking, G. The strength of a chemical bond. Int. J. Quantum Chem. e26773 (2021).

Jerabek P, Schwerdtfeger P, Frenking G. Dative and electron-sharing bonding in transition metal compounds. J. Comput. Chem. 2019;40:247–264. doi: 10.1002/jcc.25584. PubMed DOI

Georgiou DC, Zhao L, Wilson DJ, Frenking G, Dutton JL. NHC-stabilised acetylene-how far can the analogy be pushed? Chemistry. 2017;23:2926–2934. doi: 10.1002/chem.201605495. PubMed DOI

Frenking G. Dative bonds in main-group compounds: a case for more arrows! Angew. Chem. Int. Ed. 2014;53:6040–6046. doi: 10.1002/anie.201311022. PubMed DOI

Pan S, Frenking G. A critical look at Linus Pauling’s influence on the understanding of chemical bonding. Molecules. 2021;26:4695. doi: 10.3390/molecules26154695. PubMed DOI PMC

Frenking, G. In the Chemical Bond. Chemical Bonding Across the Periodic Table (eds Frenking, G. & Shaik, S.) 175–218 (Wiley VCH, 2014).

Nandi A, Kozuch S. History and future of dative bonds. Chem. Eur. J. 2020;26:759–772. doi: 10.1002/chem.201903736. PubMed DOI

Smith BA, Vogiatzis KD. σ‑donation and π‑backdonation effects in dative bonds of main-group elements. J. Phys. Chem. A. 2021;125:7956–7966. doi: 10.1021/acs.jpca.1c05956. PubMed DOI

Plumley JA, Evanseck JD. Covalent and ionic nature of the dative bond and account of accurate ammonia borane binding enthalpies. J. Phys. Chem. A. 2007;111:13472–13483. doi: 10.1021/jp074937z. PubMed DOI

Zhong D, Zewail AH. Femtosecond dynamics of dative bonding: concepts of reversible and dissociative electron transfer reactions. Proc. Natl Acad. Sci. USA. 1999;96:2602–2607. doi: 10.1073/pnas.96.6.2602. PubMed DOI PMC

Jonas V, Frenking G, Reetz MT. Comparative theoretical study of Lewis acid-base complexes of BH3, BF3, BCl3, AlCl3, and SO2. J. Am. Chem. Soc. 1994;116:8741–8753. doi: 10.1021/ja00098a037. DOI

Mo Y, Song L, Wu W, Zhang Q. Charge transfer in the electron donor-acceptor complex BH3NH3. J. Am. Chem. Soc. 2004;126:3974–3982. doi: 10.1021/ja039778l. PubMed DOI

Fiorillo AA, Galbraith JM. A valence bond description of coordinate covalent bonding. J. Phys. Chem. A. 2004;108:5126–5130. doi: 10.1021/jp049632o. DOI

Mo Y, Gao J. Polarization and charge-transfer effects in Lewis acid-base complexes. J. Phys. Chem. A. 2001;105:6530–6536. doi: 10.1021/jp010348w. DOI

Hess NJ. Spectroscopic studies of the phase transition in ammonia borane: Raman spectroscopy of single crystal NH3BH3 as a function of temperature from 88 to 330K. J. Chem. Phys. 2008;128:034508. doi: 10.1063/1.2820768. PubMed DOI

Giesen DJ, Phillips JA. Structure, bonding, and vibrational frequencies of CH3CN-BF3: new insight into medium effects and the discrepancy between the experimental and theoretical geometries. J. Phys. Chem. A. 2003;107:4009–4018. doi: 10.1021/jp022358i. DOI

Dillen J, Verhoeven P. The end of a 30-year-old controversy? A computational study of the B-N stretching frequency of BH3-NH3 in the. J. Phys. Chem. A. 2003;107:2570–2577. doi: 10.1021/jp027240g. DOI

Frenking G. The chemical bond—an entrance door of chemistry to the neighboring sciences and to philosophy. Isr. J. Chem. 2021;61:1–9. doi: 10.1002/ijch.202180101. DOI

Cremer D, Wu A, Larsson A, Kraka E. Some thoughts about bond energies, bond lengths, and force constants. J. Mol. Model. 2000;6:396–412. doi: 10.1007/PL00010739. DOI

Konkoli Z, Cremer D. A new way of analyzing vibrational spectra. I. Derivation of adiabatic internal modes. Int. J. Quant. Chem. 1998;67:1–9. doi: 10.1002/(SICI)1097-461X(1998)67:1<1::AID-QUA1>3.0.CO;2-Z. DOI

Konkoli Z, Larsson JA, Cremer D. A new way of analyzing vibrational spectra. II. Comparison of internal mode frequencies. Int. J. Quant. Chem. 1998;67:11–27. doi: 10.1002/(SICI)1097-461X(1998)67:1<11::AID-QUA2>3.0.CO;2-1. DOI

Konkoli Z, Cremer D. A new way of analyzing vibrational spectra. III. Characterization of normal vibrational modes in terms of internal vibrational modes. Int. J. Quant. Chem. 1998;67:29–40. doi: 10.1002/(SICI)1097-461X(1998)67:1<29::AID-QUA3>3.0.CO;2-0. DOI

Konkoli Z, Larsson JA, Cremer D. A new way of analyzing vibrational spectra. IV. Application and testing of adiabatic modes within the concept of the characterization of normal modes. Int. J. Quant. Chem. 1998;67:41–55. doi: 10.1002/(SICI)1097-461X(1998)67:1<41::AID-QUA4>3.0.CO;2-Z. DOI

Hougen JT, Bunker PR, Johns JWC. The vibration-rotation problem in triatomic molecules allowing for a large-amplitude bending vibration. J. Mol. Spectrosc. 1970;34:136–172. doi: 10.1016/0022-2852(70)90080-9. DOI

Lo R, et al. Addition reaction between piperidine and C60 to form 1,4-disubstituted C60 proceeds through van der Waals and dative bond complexes: theoretical and experimental study. J. Am. Chem. Soc. 2021;143:10930–10939. doi: 10.1021/jacs.1c01542. PubMed DOI

Lamanec M, et al. The existence of N→C dative bond in C60-piperidine complex. Angew. Chem. Int. Ed. 2021;60:1942–1950. doi: 10.1002/anie.202012851. PubMed DOI

Lo R, et al. Structure-directed formation of the dative/covalent bonds in complexes with C70⋯piperidine. Phys. Chem. Chem. Phys. 2021;23:4365–4375. doi: 10.1039/D0CP06280D. PubMed DOI

Lo R, Manna D, Hobza P. Tuning the P–C dative/covalent bond formation in R3P–C60 complexes by changing the R group. Chem. Commun. 2021;57:3363–3366. doi: 10.1039/D1CC00038A. PubMed DOI

Lo R, Manna D, Hobza P. Cyclo[n]carbons form a strong N→C dative/covalent bonds with piperidine. J. Phys. Chem. A. 2021;125:2923–2931. doi: 10.1021/acs.jpca.1c01161. PubMed DOI

Lo R, Manna D, Hobza P. P-doped graphene–C60 nanocomposite: a donor–acceptor complex with a P–C dative bond. Chem. Commun. 2022;58:1045–1048. doi: 10.1039/D1CC05737E. PubMed DOI

Dračínský M. The chemical bond: the perspective of NMR spectroscopy. Annu. Rep. NMR Spectrosc. 2017;90:1–40. doi: 10.1016/bs.arnmr.2016.07.001. DOI

Bühl D-CM, Steinke T, Schleyer PVR, Boese R. Solvation effects on geometry and chemical shifts. An ab initio/IGLO reconciliation of apparent experimental inconsistencies on H3B·NH3. Angew. Chem. Int. Ed. 1991;30:1160–1161. doi: 10.1002/anie.199111601. DOI

Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI

Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI

Klamt A, Schüürmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2. 1993;2:799–805. doi: 10.1039/P29930000799. DOI

Carpenter, J. E. Extension of Lewis structure concepts to open-shell and excited-state molecular species, Ph.D. thesis, University of Wisconsin, Madison, WI, (1987).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...