The stability of covalent dative bond significantly increases with increasing solvent polarity
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35440662
PubMed Central
PMC9018688
DOI
10.1038/s41467-022-29806-3
PII: 10.1038/s41467-022-29806-3
Knihovny.cz E-zdroje
- MeSH
- ionty MeSH
- rozpouštědla * chemie MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ionty MeSH
- rozpouštědla * MeSH
It is generally expected that a solvent has only marginal effect on the stability of a covalent bond. In this work, we present a combined computational and experimental study showing a surprising stabilization of the covalent/dative bond in Me3NBH3 complex with increasing solvent polarity. The results show that for a given complex, its stability correlates with the strength of the bond. Notably, the trends in calculated changes of binding (free) energies, observed with increasing solvent polarity, match the differences in the solvation energies (ΔEsolv) of the complex and isolated fragments. Furthermore, the studies performed on the set of the dative complexes, with different atoms involved in the bond, show a linear correlation between the changes of binding free energies and ΔEsolv. The observed data indicate that the ionic part of the combined ionic-covalent character of the bond is responsible for the stabilizing effects of solvents.
Zobrazit více v PubMed
Hwang K-J, et al. The influence of dielectric constant on ionic and non-polar interactions. Bull. Korean Chem. Soc. 2003;24:55–59. doi: 10.5012/bkcs.2003.24.1.055. DOI
Mc Keen, L. W. Film Properties of Plastics and Elastomers, Introduction to Properties of Plastic and Elastomer Films 3rd edn (Elsevier, 2012).
Lewis, G. N. Valence and the Structure of Atoms and Molecules (The Chemical Catalog Company, 1923).
Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals 3rd edn (Cornell University, 1938).
Haaland A. Covalent versus dative bonds to main group metals, a useful distinction. Angew. Chem. Int. Ed. 1989;28:992–1007. doi: 10.1002/anie.198909921. DOI
Zhao L, Hermann M, Holzmann N, Frenking G. Dative bonding in main group compounds. Coord. Chem. Rev. 2017;344:163–204. doi: 10.1016/j.ccr.2017.03.026. DOI
Zhao L, Pan S, Holzmann N, Schwerdtfeger P, Frenking G. Chemical bonding and bonding models of main-group compounds. Chem. Rev. 2019;119:8781–8845. doi: 10.1021/acs.chemrev.8b00722. PubMed DOI
Frenking G, Hermann M, Andrada DM, Holzmann N. Donor–acceptor bonding in novel low-coordinated compounds of boron and group-14 atoms C–Sn. Chem. Soc. Rev. 2016;45:1129–1144. doi: 10.1039/C5CS00815H. PubMed DOI
Zhao, L., Zhi, M. & Frenking, G. The strength of a chemical bond. Int. J. Quantum Chem. e26773 (2021).
Jerabek P, Schwerdtfeger P, Frenking G. Dative and electron-sharing bonding in transition metal compounds. J. Comput. Chem. 2019;40:247–264. doi: 10.1002/jcc.25584. PubMed DOI
Georgiou DC, Zhao L, Wilson DJ, Frenking G, Dutton JL. NHC-stabilised acetylene-how far can the analogy be pushed? Chemistry. 2017;23:2926–2934. doi: 10.1002/chem.201605495. PubMed DOI
Frenking G. Dative bonds in main-group compounds: a case for more arrows! Angew. Chem. Int. Ed. 2014;53:6040–6046. doi: 10.1002/anie.201311022. PubMed DOI
Pan S, Frenking G. A critical look at Linus Pauling’s influence on the understanding of chemical bonding. Molecules. 2021;26:4695. doi: 10.3390/molecules26154695. PubMed DOI PMC
Frenking, G. In the Chemical Bond. Chemical Bonding Across the Periodic Table (eds Frenking, G. & Shaik, S.) 175–218 (Wiley VCH, 2014).
Nandi A, Kozuch S. History and future of dative bonds. Chem. Eur. J. 2020;26:759–772. doi: 10.1002/chem.201903736. PubMed DOI
Smith BA, Vogiatzis KD. σ‑donation and π‑backdonation effects in dative bonds of main-group elements. J. Phys. Chem. A. 2021;125:7956–7966. doi: 10.1021/acs.jpca.1c05956. PubMed DOI
Plumley JA, Evanseck JD. Covalent and ionic nature of the dative bond and account of accurate ammonia borane binding enthalpies. J. Phys. Chem. A. 2007;111:13472–13483. doi: 10.1021/jp074937z. PubMed DOI
Zhong D, Zewail AH. Femtosecond dynamics of dative bonding: concepts of reversible and dissociative electron transfer reactions. Proc. Natl Acad. Sci. USA. 1999;96:2602–2607. doi: 10.1073/pnas.96.6.2602. PubMed DOI PMC
Jonas V, Frenking G, Reetz MT. Comparative theoretical study of Lewis acid-base complexes of BH3, BF3, BCl3, AlCl3, and SO2. J. Am. Chem. Soc. 1994;116:8741–8753. doi: 10.1021/ja00098a037. DOI
Mo Y, Song L, Wu W, Zhang Q. Charge transfer in the electron donor-acceptor complex BH3NH3. J. Am. Chem. Soc. 2004;126:3974–3982. doi: 10.1021/ja039778l. PubMed DOI
Fiorillo AA, Galbraith JM. A valence bond description of coordinate covalent bonding. J. Phys. Chem. A. 2004;108:5126–5130. doi: 10.1021/jp049632o. DOI
Mo Y, Gao J. Polarization and charge-transfer effects in Lewis acid-base complexes. J. Phys. Chem. A. 2001;105:6530–6536. doi: 10.1021/jp010348w. DOI
Hess NJ. Spectroscopic studies of the phase transition in ammonia borane: Raman spectroscopy of single crystal NH3BH3 as a function of temperature from 88 to 330K. J. Chem. Phys. 2008;128:034508. doi: 10.1063/1.2820768. PubMed DOI
Giesen DJ, Phillips JA. Structure, bonding, and vibrational frequencies of CH3CN-BF3: new insight into medium effects and the discrepancy between the experimental and theoretical geometries. J. Phys. Chem. A. 2003;107:4009–4018. doi: 10.1021/jp022358i. DOI
Dillen J, Verhoeven P. The end of a 30-year-old controversy? A computational study of the B-N stretching frequency of BH3-NH3 in the. J. Phys. Chem. A. 2003;107:2570–2577. doi: 10.1021/jp027240g. DOI
Frenking G. The chemical bond—an entrance door of chemistry to the neighboring sciences and to philosophy. Isr. J. Chem. 2021;61:1–9. doi: 10.1002/ijch.202180101. DOI
Cremer D, Wu A, Larsson A, Kraka E. Some thoughts about bond energies, bond lengths, and force constants. J. Mol. Model. 2000;6:396–412. doi: 10.1007/PL00010739. DOI
Konkoli Z, Cremer D. A new way of analyzing vibrational spectra. I. Derivation of adiabatic internal modes. Int. J. Quant. Chem. 1998;67:1–9. doi: 10.1002/(SICI)1097-461X(1998)67:1<1::AID-QUA1>3.0.CO;2-Z. DOI
Konkoli Z, Larsson JA, Cremer D. A new way of analyzing vibrational spectra. II. Comparison of internal mode frequencies. Int. J. Quant. Chem. 1998;67:11–27. doi: 10.1002/(SICI)1097-461X(1998)67:1<11::AID-QUA2>3.0.CO;2-1. DOI
Konkoli Z, Cremer D. A new way of analyzing vibrational spectra. III. Characterization of normal vibrational modes in terms of internal vibrational modes. Int. J. Quant. Chem. 1998;67:29–40. doi: 10.1002/(SICI)1097-461X(1998)67:1<29::AID-QUA3>3.0.CO;2-0. DOI
Konkoli Z, Larsson JA, Cremer D. A new way of analyzing vibrational spectra. IV. Application and testing of adiabatic modes within the concept of the characterization of normal modes. Int. J. Quant. Chem. 1998;67:41–55. doi: 10.1002/(SICI)1097-461X(1998)67:1<41::AID-QUA4>3.0.CO;2-Z. DOI
Hougen JT, Bunker PR, Johns JWC. The vibration-rotation problem in triatomic molecules allowing for a large-amplitude bending vibration. J. Mol. Spectrosc. 1970;34:136–172. doi: 10.1016/0022-2852(70)90080-9. DOI
Lo R, et al. Addition reaction between piperidine and C60 to form 1,4-disubstituted C60 proceeds through van der Waals and dative bond complexes: theoretical and experimental study. J. Am. Chem. Soc. 2021;143:10930–10939. doi: 10.1021/jacs.1c01542. PubMed DOI
Lamanec M, et al. The existence of N→C dative bond in C60-piperidine complex. Angew. Chem. Int. Ed. 2021;60:1942–1950. doi: 10.1002/anie.202012851. PubMed DOI
Lo R, et al. Structure-directed formation of the dative/covalent bonds in complexes with C70⋯piperidine. Phys. Chem. Chem. Phys. 2021;23:4365–4375. doi: 10.1039/D0CP06280D. PubMed DOI
Lo R, Manna D, Hobza P. Tuning the P–C dative/covalent bond formation in R3P–C60 complexes by changing the R group. Chem. Commun. 2021;57:3363–3366. doi: 10.1039/D1CC00038A. PubMed DOI
Lo R, Manna D, Hobza P. Cyclo[n]carbons form a strong N→C dative/covalent bonds with piperidine. J. Phys. Chem. A. 2021;125:2923–2931. doi: 10.1021/acs.jpca.1c01161. PubMed DOI
Lo R, Manna D, Hobza P. P-doped graphene–C60 nanocomposite: a donor–acceptor complex with a P–C dative bond. Chem. Commun. 2022;58:1045–1048. doi: 10.1039/D1CC05737E. PubMed DOI
Dračínský M. The chemical bond: the perspective of NMR spectroscopy. Annu. Rep. NMR Spectrosc. 2017;90:1–40. doi: 10.1016/bs.arnmr.2016.07.001. DOI
Bühl D-CM, Steinke T, Schleyer PVR, Boese R. Solvation effects on geometry and chemical shifts. An ab initio/IGLO reconciliation of apparent experimental inconsistencies on H3B·NH3. Angew. Chem. Int. Ed. 1991;30:1160–1161. doi: 10.1002/anie.199111601. DOI
Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI
Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI
Klamt A, Schüürmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2. 1993;2:799–805. doi: 10.1039/P29930000799. DOI
Carpenter, J. E. Extension of Lewis structure concepts to open-shell and excited-state molecular species, Ph.D. thesis, University of Wisconsin, Madison, WI, (1987).