Hydrogen Bonding with Hydridic Hydrogen-Experimental Low-Temperature IR and Computational Study: Is a Revised Definition of Hydrogen Bonding Appropriate?
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37036315
PubMed Central
PMC10119939
DOI
10.1021/jacs.3c00802
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Spectroscopic characteristics of Me3Si-H···Y complexes (Y = ICF3, BrCN, and HCN) containing a hydridic hydrogen were determined experimentally by low-temperature IR experiments based on the direct spectral measurement of supersonically expanded intermediates on a cold substrate or by the technique of argon-matrix isolation as well as computationally at harmonic and one-dimensional anharmonic levels. The computations were based on DFT-D, MP2, MP2-F12, and CCSD(T)-F12 levels using various extended AO basis sets. The formation of all complexes related to the redshift of the Si-H stretching frequency upon complex formation was accompanied by an increase in its intensity. Similar results were obtained for another 10 electron acceptors of different types, positive σ-, π-, and p-holes and cations. The formation of HBe-H···Y complexes, studied only computationally and again containing a hydridic hydrogen, was characterized by the blueshift of the Be-H stretching frequency upon complexation accompanied by an increase in its intensity. The spectral shifts and stabilization energies obtained for all presently studied hydridic H-bonded complexes were comparable to those in protonic H-bonded complexes, which has prompted us to propose a modification of the existing IUPAC definition of H-bonding that covers, besides the classical protonic form, the non-classical hydridic and dihydrogen forms.
Zobrazit více v PubMed
Kollman P. A.; Allen L. C. The Theory of Hydrogen Bond. Chem. Rev. 1972, 72, 283–303. 10.1021/cr60277a004. DOI
Reed A. E.; Weinhold F.; Curtiss L. A.; Pochatko D. J. Natural Bond Orbital Analysis of Molecular Interactions: Theoretical Studies of Binary Complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3. J. Chem. Phys. 1998, 84, 5687.10.1063/1.449928. DOI
Grabowski S. J. What Is the Covalency of Hydrogen Bonding?. Chem. Rev. 2011, 111, 2597–2625. 10.1021/cr800346f. PubMed DOI
Hobza P.; Havlas Z. Blue-Shifting Hydrogen Bonds. Chem. Rev. 2000, 100, 4253–4264. 10.1021/cr990050q. PubMed DOI
Hobza P.; Špirko V.; Havlas Z.; Buchhold K.; Reimann B.; Barth H. D.; Brutschy B. Anti-Hydrogen Bond between Chloroform and Fluorobenzene. Chem. Phys. Lett. 1999, 299, 180–186. 10.1016/S0009-2614(98)01264-0. DOI
Arunan E.; et al. Defining the Hydrogen Bond: An Account (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 1619–1636. 10.1351/PAC-REP-10-01-01. DOI
Jabłoński M. Binding of X–H to the Lone-Pair Vacancy: Charge-Inverted Hydrogen Bond. Chem. Phys. Lett. 2009, 477, 374–376. 10.1016/j.cplett.2009.07.009. DOI
Jabłoński Full vs. Constrain Geometry Optimization in the Open-Closed Method in Estimating the Energy of Intramolecular Charge-Inverted Hydrogen Bonds. Chem. Phys. 2010, 376, 76–83. 10.1016/j.chemphys.2010.08.005. DOI
Jabłoński M. Intramolecular Charge-Inverted Hydrogen Bond. J. Mol. Struct. THEOCHEM 2010, 948, 21–24. 10.1016/j.theochem.2010.02.013. DOI
Jabłoński M.; Sokalski W. A. Physical Nature of Interactions in Charge-Inverted Hydrogen Bonds. Chem. Phys. Lett. 2012, 552, 156–161. 10.1016/j.cplett.2012.09.061. DOI
Jabłoński M. Theoretical Insight into the Nature of the Intermolecular Charge-Inverted Hydrogen Bond. Comput. Theor. Chem. 2012, 998, 39–45. 10.1016/j.comptc.2012.05.023. DOI
Jabłoński Charge-Inverted Hydrogen Bond vs. Other Interactions Possessing a Hydridic Hydrogen Atom. Chem. Phys. 2014, 433, 76–84. 10.1016/j.chemphys.2014.01.021. DOI
Jabłoński M. Comparative Study of Geometric and QTAIM-Based Differences between X-H···Y Intramolecular Charge-Inverted Hydrogen Bonds, M1···(H–X) Agostic Bonds and M2···(H2-XH) σ Interactions (X = Si, Ge). Comput. Theor. Chem. 2016, 1096, 54–65. 10.1016/j.comptc.2016.09.023. DOI
Jabłoński M. Strength of Si-H···B Charge-Inverted Hydrogen Bonds in 1-Silacyclopent-2-Enes and 1-Silacyclohex-2-Enes. Struct. Chem. 2017, 28, 1697–1706. 10.1007/s11224-017-0939-6. DOI
Jabłoński M. Ten Years of Charge-Inverted Hydrogen Bonds. Struct. Chem. 2020, 31, 61–80. 10.1007/s11224-019-01454-2. DOI
Crabtree R. H.; Siegbahn P. E. M.; Eisenstein O.; Rheingold A. L.; Koetzle T. F. A New Intermolecular Interaction: Unconventional Hydrogen Bonds with Element-Hydride Bonds as Proton Acceptor. Acc. Chem. Res. 1996, 29, 348–354. 10.1021/ar950150s. PubMed DOI
Guillot B. A Reappraisal of What We Have Learnt during Three Decades of Computer Simulations on Water. J. Mol. Liq. 2002, 101, 219–260. 10.1016/S0167-7322(02)00094-6. DOI
Shea J. A.; Flygare W. H. The Rotational Spectrum and Molecular Structure of the Ethylene–HF Complex. J. Chem. Phys. 1998, 76, 4857.
Novick S. E.; Davies P. B.; Dyke T. R.; Klemperer W. Polarity of van Der Waals Molecules. J. Am. Chem. Soc. 1973, 95, 8547–8550. 10.1021/ja00807a008. DOI
Bondybey V. E.; Smith A. M.; Agreiter J. New Developments in Matrix Isolation Spectroscopy. Chem. Rev. 1996, 96, 2113–2134. 10.1021/cr940262h. PubMed DOI
Potapov A. Weakly Bound Molecular Complexes in the Laboratory and in the Interstellar Medium: A Lost Interest?. Mol. Astrophys. 2017, 6, 16–21. 10.1016/j.molap.2017.01.001. DOI
Whittle E.; Dows D. A.; Pimentel G. C. Matrix Isolation Method for the Experimental Study of Unstable Species. J Chem Phys 1954, 22, 1943.10.1063/1.1739957. DOI
Jacox M. E. The Spectroscopy of Molecular Reaction Intermediates Trapped in the Solid Rare Gases. Chem. Soc. Rev. 2002, 31, 108–115. 10.1039/b102907j. PubMed DOI
Klemperer W.; Vaida V. Molecular Complexes in Close and Far Away. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10584–10588. 10.1073/pnas.0508231103. PubMed DOI PMC
Peterson K. A.; Dunning T. H. Accurate Correlation Consistent Basis Sets for Molecular Core–Valence Correlation Effects: The Second Row Atoms Al–Ar, and the First Row Atoms B–Ne Revisited. J. Chem. Phys. 2002, 117, 10548.10.1063/1.1520138. DOI
Peterson K. A.; Yousaf K. E. Molecular Core-Valence Correlation Effects Involving the Post-d Elements Ga–Rn: Benchmarks and New Pseudopotential-Based Correlation Consistent Basis Sets. J Chem Phys 2010, 133, 17411610.1063/1.3503659. PubMed DOI
Werner H. J.; Adler T. B.; Manby F. R. General Orbital Invariant MP2-F12 Theory. J Chem Phys 2007, 126, 16410210.1063/1.2712434. PubMed DOI
Peterson K. A.; Adler T. B.; Werner H. J. Systematically Convergent Basis Sets for Explicitly Correlated Wavefunctions: The Atoms H, He, B–Ne, and Al–Ar. J Chem Phys 2008, 128, 08410210.1063/1.2831537. PubMed DOI
Werner H. J.; Knowles P. J.; Knizia G.; Manby F. R.; Schütz M. Molpro: A General-Purpose Quantum Chemistry Program Package. Wiley Interdiscip Rev Comput Mol Sci 2012, 2, 242–253. 10.1002/wcms.82. DOI
Werner H. J.; Knowles P. J.; Manby F. R.; Black J. A.; Doll K.; Heßelmann A.; Kats D.; Köhn A.; Korona T.; Kreplin D. A.; Ma Q.; Miller T. F.; Mitrushchenkov A.; Peterson K. A.; Polyak I.; Rauhut G.; Sibaev M. The Molpro Quantum Chemistry Package. J. Chem. Phys. 2020, 152, 14410710.1063/5.0005081. PubMed DOI
Řezáč J. Cuby: An Integrative Framework for Computational Chemistry. J. Comput. Chem. 2016, 37, 1230–1237. 10.1002/jcc.24312. PubMed DOI
TURBOMOLE V7.5 2020, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
Adler T. B.; Knizia G.; Werner H. J. A Simple and Efficient CCSD(T)-F12 Approximation. J. Chem. Phys. 2007, 127, 22110610.1063/1.2817618. PubMed DOI
Boys S. F.; Bernardi F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553–566. 10.1080/00268977000101561. DOI
Jeziorski B.; Moszynski R.; Szalewicz K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van Der Waals Complexes. Chem. Rev. 1994, 94, 1887–1930. 10.1021/cr00031a008. DOI
Parrish R. M.; Burns L. A.; Smith D. G. A.; Simmonett A. C.; DePrince A. E.; Hohenstein E. G.; Bozkaya U.; Sokolov A. Y.; di Remigio R.; Richard R. M.; Gonthier J. F.; James A. M.; McAlexander H. R.; Kumar A.; Saitow M.; Wang X.; Pritchard B. P.; Verma P.; Schaefer H. F.; Patkowski K.; King R. A.; Valeev E. F.; Evangelista F. A.; Turney J. M.; Crawford T. D.; Sherrill C. D. Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. J. Chem. Theory Comput. 2017, 13, 3185–3197. 10.1021/acs.jctc.7b00174. PubMed DOI PMC
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J. G16_C01. 2016, p Gaussian 16, Revision C.01, Gaussian, Inc., Wallin.
Mallada B.; Gallardo A.; Lamanec M.; de la Torre B.; Špirko V.; Hobza P.; Jelinek P. Real-Space Imaging of Anisotropic Charge of σ-Hole by Means of Kelvin Probe Force Microscopy. Science 2021, 374, 863–867. 10.1126/science.abk1479. PubMed DOI
Lo R.; Manna D.; Lamanec M.; Dračínský M.; Bouř P.; Wu T.; Bastien G.; Kaleta J.; Miriyala V. M.; Špirko V.; Mašínová A.; Nachtigallová D.; Hobza P. The Stability of Covalent Dative Bond Significantly Increases with Increasing Solvent Polarity. Nat. Commun. 2022, 13, 1–7. PubMed PMC
Hougen J. T.; Bunker P. R.; Johns J. W. C. The Vibration-Rotation Problem in Triatomic Molecules Allowing for a Large-Amplitude Bending Vibration. J. Mol. Spectrosc. 1970, 34, 136–172. 10.1016/0022-2852(70)90080-9. DOI
Van Der Batsanov S. S. Waals Radii of Elements. Inorg. Mater. 2001, 37, 871–885. 10.1023/A:1011625728803. DOI
Quantifying the Intrinsic Strength of C-H⋯O Intermolecular Interactions