On the similar spectral manifestations of protonic and hydridic hydrogen bonds despite their different origin

. 2024 Nov 07 ; 7 (1) : 254. [epub] 20241107

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39511382
Odkazy

PubMed 39511382
PubMed Central PMC11543944
DOI 10.1038/s42004-024-01334-9
PII: 10.1038/s42004-024-01334-9
Knihovny.cz E-zdroje

Previously studied complexes with protonic and hydridic hydrogen bonds exhibit significant similarities. The present study provides a detailed investigation of the structure, stabilization, electronic properties, and spectral characteristics of protonic and hydridic hydrogen bonds using low-temperature infrared (IR) spectroscopy and computational methods. Complexes of pentafluorobenzene with ammonia (C₆F₅H⋯NH₃) and triethylgermane with trifluoroiodomethane (Et₃GeH⋯ICF₃) were analyzed using both experimental and computational tools. Additionally, 30 complexes with protonic hydrogen bonds and 30 complexes with hydridic hydrogen bonds were studied computationally. Our findings reveal that, despite the opposite atomic charges on the hydrogens in these hydrogen bonds, and consequently the opposite directions of electron transfer in protonic and hydridic hydrogen bonds, their spectral manifestations - specifically, the red shifts in the X-H stretching frequency and the increase in intensity - are remarkably similar. The study also discusses the limitations of the current IUPAC definition of hydrogen bonding in covering both types of H-bonds and suggests a way to overcome these limitations.

Zobrazit více v PubMed

Černý, J. & Hobza, P. Non-covalent interactions in biomacromolecules. Phys. Chem. Chem. Phys.9, 5291–5303 (2007). PubMed

Grabowski, S. J. What is the covalency of hydrogen bonding? Chem. Rev.111, 2597–2625 (2011). PubMed

Gerlt, J. A., Kreevoy, M. M., Cleland, W. W. & Frey, P. A. Understanding enzymic catalysis: the importance of short, strong hydrogen bonds. Chem. Biol.4, 259–267 (1997). PubMed

Řezáč, J. & Hobza, P. Benchmark calculations of interaction energies in noncovalent complexes and their applications. Chem. Rev.116, 5038–5071 (2016). PubMed

Hobza, P. et al. Anti-hydrogen bond between chloroform and fluorobenzene. Chem. Phys. Lett.299, 180–186 (1999).

Hobza, P. & Havlas, Z. Blue-shifting hydrogen bonds. Chem. Rev.100, 4253–4264 (2000). PubMed

Arunan, E. et al. Defining the hydrogen bond: an account (IUPAC Technical Report). Pure Appl. Chem.83, 1619–1636 (2011).

Jabłoński, M. Binding of X-H to the lone-pair vacancy: charge-inverted hydrogen bond. Chem. Phys. Lett.477, 374–376 (2009).

Jabłoński, M. Theoretical insight into the nature of the intermolecular charge-inverted hydrogen bond. Comput Theor. Chem.998, 39–45 (2012).

Jabłoński, M. Comparative study of geometric and QTAIM-based differences between X–H⋯Y intramolecular charge-inverted hydrogen bonds, M1⋯(H–X) agostic bonds and M2⋯(η2-XH) σ interactions (X = Si, Ge. Comput. Theor. Chem. 1096, 54–65 (2016).

Jabłoński, M. Ten years of charge-inverted hydrogen bonds. Struct. Chem.31, 61–80 (2020).

Rozas, I., Alkorta, I. & Elguero, J. Inverse hydrogen-bonded complexes. J. Phys. Chem. A101, 4236–4244 (1997).

Grabowski, S. J., Sokalski, W. A. & Leszczynski, J. Hydride bonding—Ab initio studies of BeH2…Li+, BeH2…Na+ and BeH2…Mg2+ model systems. Chem. Phys. Lett.422, 334–339 (2006).

Grabowski, S. J. Hydrogen bond types which do not fit accepted definitions. Chem. Commun.60, 6239–6255 (2024). PubMed

Civiš, S. et al. Hydrogen bonding with hydridic hydrogen-experimental low-temperature IR and computational study: is a revised definition of hydrogen bonding appropriate? J. Am. Chem. Soc.145, 8559 (2023). PubMed PMC

Lamanec, M., Zienertová, J., Špeťko, M., Nachtigallová, D. & Hobza, P. Similarities and differences of hydridic and protonic hydrogen bonding. ChemPhysChem25, e202400403 (2024). PubMed

Řezáč, J. Non-covalent interactions atlas benchmark data sets: hydrogen bonding. J. Chem. Theory Comput16, 2355–2368 (2020). PubMed

Řezáč, J. Non-covalent interactions atlas benchmark data sets 2: hydrogen bonding in an extended chemical space. J. Chem. Theory Comput.16, 6305–6316 (2020). PubMed

Jabłoński, M. Charge-inverted hydrogen bond vs. other interactions possessing a hydridic hydrogen atom. Chem. Phys.433, 76–84 (2014).

Bondybey, V. E., Smith, A. M. & Agreiter, J. New developments in matrix isolation spectroscopy. Chem. Rev.96, 2113–2134 (1996). PubMed

Peterson, K. A. & Dunning, T. H. Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited. J. Chem. Phys.117, 10548 (2002).

Peterson, K. A. & Yousaf, K. E. Molecular core-valence correlation effects involving the post-d elements Ga-Rn: Benchmarks and new pseudopotential-based correlation consistent basis sets. J. Chem. Phys.133, 174116 (2010). PubMed

Mardirossian, N. & Head-Gordon, M. ω B97M-V: a combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys.144, 214110 (2016). PubMed

Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys.110, 6158–6170 (1999).

Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys.7, 3297–3305 (2005). PubMed

Caldeweyher, E., Bannwarth, C. & Grimme, S. Extension of the D3 dispersion coefficient model. J. Chem. Phys.147, 034112 (2017). PubMed

Glendening, E. D., Landis, C. R. & Weinhold, F. NBO 7.0: new vistas in localized and delocalized chemical bonding theory. J. Comput Chem.40, 2234–2241 (2019). PubMed

Reed, A. E., Weinhold, F., Curtiss, L. A. & Pochatko, D. J. Natural bond orbital analysis of molecular interactions: theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3. J. Chem. Phys.84, 5687 (1998).

Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys.152, 224108 (2020). PubMed

Werner, H. J., Knowles, P. J., Knizia, G., Manby, F. R. & Schütz, M. Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci.2, 242–253 (2012).

Werner, H. J. et al. The Molpro quantum chemistry package. J. Chem. Phys.152, 144107 (2020). PubMed

Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta44, 129–138 (1977).

Cornell, W. D. & Cieplak, P. Christopher, I, Bayly, I. & Kollman, P. A. Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J. Am. Chem. Soc.115, 9620–9631 (1993).

Epifanovsky, E. et al. Software for the frontiers of quantum chemistry: an overview of developments in the Q-Chem 5 package. J. Chem. Phys.155, 84801 (2021). PubMed PMC

Jeziorski, B., Moszynski, R. & Szalewicz, K. Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem. Rev.94, 1887–1930 (1994).

Wilson, A. K., Woon, D. E., Peterson, K. A. & Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J. Chem. Phys.110, 7667–7676 (1999).

Smith, D. G. A. et al. P SI4 1.4: Open-source software for high-throughput quantum chemistry. J. Chem. Phys.152, 184108 (2020). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace