On the similar spectral manifestations of protonic and hydridic hydrogen bonds despite their different origin
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39511382
PubMed Central
PMC11543944
DOI
10.1038/s42004-024-01334-9
PII: 10.1038/s42004-024-01334-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Previously studied complexes with protonic and hydridic hydrogen bonds exhibit significant similarities. The present study provides a detailed investigation of the structure, stabilization, electronic properties, and spectral characteristics of protonic and hydridic hydrogen bonds using low-temperature infrared (IR) spectroscopy and computational methods. Complexes of pentafluorobenzene with ammonia (C₆F₅H⋯NH₃) and triethylgermane with trifluoroiodomethane (Et₃GeH⋯ICF₃) were analyzed using both experimental and computational tools. Additionally, 30 complexes with protonic hydrogen bonds and 30 complexes with hydridic hydrogen bonds were studied computationally. Our findings reveal that, despite the opposite atomic charges on the hydrogens in these hydrogen bonds, and consequently the opposite directions of electron transfer in protonic and hydridic hydrogen bonds, their spectral manifestations - specifically, the red shifts in the X-H stretching frequency and the increase in intensity - are remarkably similar. The study also discusses the limitations of the current IUPAC definition of hydrogen bonding in covering both types of H-bonds and suggests a way to overcome these limitations.
IT4Innovations VŠB Technical University of Ostrava Ostrava Poruba Czech Republic
J Heyrovský Institute of Physical Chemistry Czech Academy of Sciences Prague 8 Czech Republic
Zobrazit více v PubMed
Černý, J. & Hobza, P. Non-covalent interactions in biomacromolecules. Phys. Chem. Chem. Phys.9, 5291–5303 (2007). PubMed
Grabowski, S. J. What is the covalency of hydrogen bonding? Chem. Rev.111, 2597–2625 (2011). PubMed
Gerlt, J. A., Kreevoy, M. M., Cleland, W. W. & Frey, P. A. Understanding enzymic catalysis: the importance of short, strong hydrogen bonds. Chem. Biol.4, 259–267 (1997). PubMed
Řezáč, J. & Hobza, P. Benchmark calculations of interaction energies in noncovalent complexes and their applications. Chem. Rev.116, 5038–5071 (2016). PubMed
Hobza, P. et al. Anti-hydrogen bond between chloroform and fluorobenzene. Chem. Phys. Lett.299, 180–186 (1999).
Hobza, P. & Havlas, Z. Blue-shifting hydrogen bonds. Chem. Rev.100, 4253–4264 (2000). PubMed
Arunan, E. et al. Defining the hydrogen bond: an account (IUPAC Technical Report). Pure Appl. Chem.83, 1619–1636 (2011).
Jabłoński, M. Binding of X-H to the lone-pair vacancy: charge-inverted hydrogen bond. Chem. Phys. Lett.477, 374–376 (2009).
Jabłoński, M. Theoretical insight into the nature of the intermolecular charge-inverted hydrogen bond. Comput Theor. Chem.998, 39–45 (2012).
Jabłoński, M. Comparative study of geometric and QTAIM-based differences between X–H⋯Y intramolecular charge-inverted hydrogen bonds, M1⋯(H–X) agostic bonds and M2⋯(η2-XH) σ interactions (X = Si, Ge. Comput. Theor. Chem. 1096, 54–65 (2016).
Jabłoński, M. Ten years of charge-inverted hydrogen bonds. Struct. Chem.31, 61–80 (2020).
Rozas, I., Alkorta, I. & Elguero, J. Inverse hydrogen-bonded complexes. J. Phys. Chem. A101, 4236–4244 (1997).
Grabowski, S. J., Sokalski, W. A. & Leszczynski, J. Hydride bonding—Ab initio studies of BeH2…Li+, BeH2…Na+ and BeH2…Mg2+ model systems. Chem. Phys. Lett.422, 334–339 (2006).
Grabowski, S. J. Hydrogen bond types which do not fit accepted definitions. Chem. Commun.60, 6239–6255 (2024). PubMed
Civiš, S. et al. Hydrogen bonding with hydridic hydrogen-experimental low-temperature IR and computational study: is a revised definition of hydrogen bonding appropriate? J. Am. Chem. Soc.145, 8559 (2023). PubMed PMC
Lamanec, M., Zienertová, J., Špeťko, M., Nachtigallová, D. & Hobza, P. Similarities and differences of hydridic and protonic hydrogen bonding. ChemPhysChem25, e202400403 (2024). PubMed
Řezáč, J. Non-covalent interactions atlas benchmark data sets: hydrogen bonding. J. Chem. Theory Comput16, 2355–2368 (2020). PubMed
Řezáč, J. Non-covalent interactions atlas benchmark data sets 2: hydrogen bonding in an extended chemical space. J. Chem. Theory Comput.16, 6305–6316 (2020). PubMed
Jabłoński, M. Charge-inverted hydrogen bond vs. other interactions possessing a hydridic hydrogen atom. Chem. Phys.433, 76–84 (2014).
Bondybey, V. E., Smith, A. M. & Agreiter, J. New developments in matrix isolation spectroscopy. Chem. Rev.96, 2113–2134 (1996). PubMed
Peterson, K. A. & Dunning, T. H. Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited. J. Chem. Phys.117, 10548 (2002).
Peterson, K. A. & Yousaf, K. E. Molecular core-valence correlation effects involving the post-d elements Ga-Rn: Benchmarks and new pseudopotential-based correlation consistent basis sets. J. Chem. Phys.133, 174116 (2010). PubMed
Mardirossian, N. & Head-Gordon, M. ω B97M-V: a combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys.144, 214110 (2016). PubMed
Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys.110, 6158–6170 (1999).
Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys.7, 3297–3305 (2005). PubMed
Caldeweyher, E., Bannwarth, C. & Grimme, S. Extension of the D3 dispersion coefficient model. J. Chem. Phys.147, 034112 (2017). PubMed
Glendening, E. D., Landis, C. R. & Weinhold, F. NBO 7.0: new vistas in localized and delocalized chemical bonding theory. J. Comput Chem.40, 2234–2241 (2019). PubMed
Reed, A. E., Weinhold, F., Curtiss, L. A. & Pochatko, D. J. Natural bond orbital analysis of molecular interactions: theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3. J. Chem. Phys.84, 5687 (1998).
Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys.152, 224108 (2020). PubMed
Werner, H. J., Knowles, P. J., Knizia, G., Manby, F. R. & Schütz, M. Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci.2, 242–253 (2012).
Werner, H. J. et al. The Molpro quantum chemistry package. J. Chem. Phys.152, 144107 (2020). PubMed
Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta44, 129–138 (1977).
Cornell, W. D. & Cieplak, P. Christopher, I, Bayly, I. & Kollman, P. A. Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J. Am. Chem. Soc.115, 9620–9631 (1993).
Epifanovsky, E. et al. Software for the frontiers of quantum chemistry: an overview of developments in the Q-Chem 5 package. J. Chem. Phys.155, 84801 (2021). PubMed PMC
Jeziorski, B., Moszynski, R. & Szalewicz, K. Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem. Rev.94, 1887–1930 (1994).
Wilson, A. K., Woon, D. E., Peterson, K. A. & Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J. Chem. Phys.110, 7667–7676 (1999).
Smith, D. G. A. et al. P SI4 1.4: Open-source software for high-throughput quantum chemistry. J. Chem. Phys.152, 184108 (2020). PubMed PMC