Similarities and Differences of Hydridic and Protonic Hydrogen Bonding
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_PrF_2024_017
Palacký University
90254
Ministry of Education, Youth and Sports of the Czech Republic
CZ.10.03.01/00/22_003/0000048
European Union under the REFRESH - Research Excellence for Region Sustainability and High-tech Industries
PubMed
38771647
DOI
10.1002/cphc.202400403
Knihovny.cz E-zdroje
- Klíčová slova
- DFT, SAPT, charge inverted hydrogen bond, hydrogen bond,
- Publikační typ
- časopisecké články MeSH
Ab initio calculations were employed to investigate the interactions between selected electron-donating groups, characterized by M-H bonds (where M represents a transition metal and H denotes a hydridic hydrogen), and electron-accepting groups featuring both σ- and π-holes. The study utilized the ωB97X-D3BJ/def2-TZVPPD level of theory. Hydridic hydrogen complexes were found in all complexes with σ- and π-holes. A comparative analysis was conducted on the properties hydridic H-bond complexes, presented here and those studied previously, alongside an extended set of protonic H-bonds complexes. While the stabilization energies changes in M-H bond lengths, vibrational frequencies, intensities of the spectral bands, and charge transfer for these complexes are comparable, the nature of hydridic and protonic H-bonds fundamentally differ. In protonic H-bond complexes, the main stabilization forces arise from electrostatic contributions, while in hydridic H-bond complexes, dispersion energy, is the primary stabilization factor due to the excess of electrons and thus larger polarizability at hydridic H. The finding represents an important characteristic that distinguishes hydridic H-bonding from protonic H-bonds.
Zobrazit více v PubMed
E. Arunan, et al., Pure Appl. Chem. 2011, 83, 1619–1636.
I. Rozas, I. Alkorta, J. Elguero, J. Phys. Chem. A 1997, 101, 4236–4244.
M. Jabłoński, Chem. Phys. Lett. 2009, 477, 374–376.
M. Jabłoński, J. Mol. Struct. 2010, 948, 21–24.
M. Jabłoński, Chem. Phys. 2014, 433, 76–84.
M. Jabłoński, J. Comput. Chem. 2014, 35, 1739–1747.
M. Jabłoński, Chem. Phys. Lett. 2009, 477, 374–376.
M. Jabłoński, Struct. Chem. 2020, 31, 61–80.
M. Jabłoński, Comput. Theor. Chem. 2012, 998, 39–45.
S. Civiš, M. Lamanec, V. Špirko, J. Kubišta, M. Špet'ko, P. Hobza, J. Am. Chem. Soc. 2023, 145, 8559.
S. E. Clapham, A. Hadzovic, R. H. Morris, Coord. Chem. Rev. 2004, 248, 2201–2237.
A. Robertson, T. Matsumoto, S. Ogo, Dalton Trans. 2011, 40, 10304–10310.
P. A. Dub, T. Ikariya, ACS Catal. 2012, 2, 1718–1741.
M. Hassam, A. Taher, G. E. Arnott, I. R. Green, W. A. L. Van Otterlo, Chem. Rev. 2015, 115, 5462–5569.
G. Hilt, ChemCatChem 2014, 6, 2484–2485.
T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147–1169.
M. R. Dubois, D. L. Dubois, Acc. Chem. Res. 2009, 42, 1974–1982.
V. S. Thoi, Y. Sun, J. R. Long, C. J. Chang, Chem. Soc. Rev. 2013, 42, 2388–2400.
S. I. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, C. M. Jensen, Chem. Rev. 2007, 107, 4111–4132.
J. Graetz, Chem. Soc. Rev. 2008, 38, 73–82.
J. Da Chai, M. Head-Gordon, J. Chem. Phys. 2008, 128, 8.
Y. S. Lin, G. De Li, S. P. Mao, J. Da Chai, J. Chem. Theory Comput. 2013, 9, 263–272.
F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys. 2020, 152, 22.
H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 242–253.
H. J. Werner, P. J. Knowles, F. R. Manby, J. A. Black, K. Doll, A. Heßelmann, D. Kats, A. Köhn, T. Korona, D. A. Kreplin, Q. Ma, T. F. Miller, A. Mitrushchenkov, K. A. Peterson, I. Polyak, G. Rauhut, M. Sibaev, J. Chem. Phys. 2020, 152, 144107.
E. G. Hohenstein, C. D. Sherrill, J. Chem. Phys. 2010, 133, 1.
K. A. Peterson, T. H. Dunning, J. Chem. Phys. 2002, 117, 10548.
D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Galvelis, P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan, A. M. James, S. Lehtola, J. P. Misiewicz, M. Scheurer, R. A. Shaw, J. B. Schriber, Y. Xie, Z. L. Glick, D. A. Sirianni, J. S. O'Brien, J. M. Waldrop, A. Kumar, E. G. Hohenstein, B. P. Pritchard, B. R. Brooks, H. F. Schaefer, A. Y. Sokolov, K. Patkowski, A. E. Deprince, U. Bozkaya, R. A. King, F. A. Evangelista, J. M. Turney, T. D. Crawford, C. D. Sherrill, J. Chem. Phys. 2020, 152, 18.
E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 2019, 40, 2234–2241.
J. Řezáč, J. Chem. Theory Comput. 2020, 16, 2355–2368.
E. Masumian, A. D. Boese, J. Chem. Theory Comput. 2024, 20, 30–48.
G. Desiraju, T. Steiner, The Weak Hydrogen Bond, Oxford, 2001.
K. Pluháčková, P. Jurečka, P. Hobza, Phys. Chem. Chem. Phys. 2007, 9, 755–760.
B. Jeziorski, R. Moszynski, K. Szalewicz, Chem. Rev. 1994, 94, 1887–1930.