Determination of Histamine in Silages Using Nanomaghemite Core (γ-Fe₂O₃)-Titanium Dioxide Shell Nanoparticles Off-Line Coupled with Ion Exchange Chromatography

. 2016 Sep 12 ; 13 (9) : . [epub] 20160912

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27626434

The presence of biogenic amines is a hallmark of degraded food and its products. Herein, we focused on the utilization of magnetic nanoparticles off-line coupled with ion exchange chromatography with post-column ninhydrin derivatization and Vis detection for histamine (Him) separation and detection. Primarily, we described the synthesis of magnetic nanoparticles with nanomaghemite core (γ-Fe₂O₃) functionalized with titanium dioxide and, then, applied these particles to specific isolation of Him. To obtain further insight into interactions between paramagnetic particles' (PMP) surface and Him, a scanning electron microscope was employed. It was shown that binding of histamine causes an increase of relative current response of deprotonated PMPs, which confirmed formation of Him-PMPs clusters. The recovery of the isolation showed that titanium dioxide-based particles were able to bind and preconcentrate Him with recovery exceeding 90%. Finally, we successfully carried out the analyses of real samples obtained from silage. We can conclude that our modified particles are suitable for Him isolation, and thus may serve as the first isolation step of Him from biological samples, as it is demonstrated on alfalfa seed variety Tereza silage.

Zobrazit více v PubMed

Sirocchi V., Caprioli G., Cecchini C., Coman M.M., Cresci A., Maggi F., Papa F., Ricciutelli M., Vittori S., Sagratini G. Biogenic amines as freshness index of meat wrapped in a new active packaging system formulated with essential oils of rosmarinus officinalis. Int. J. Food Sci. Nutr. 2013;64:921–928. doi: 10.3109/09637486.2013.809706. PubMed DOI

Agostinelli E., Arancia G., Dalla Vedova L., Belli F., Marra M., Salvi M., Toninello A. The biological functions of polyamine oxidation products by amine oxidases: Perspectives of clinical applications. Amino Acids. 2004;27:347–358. doi: 10.1007/s00726-004-0114-4. PubMed DOI

Mayer H.K., Fiechter G., Fischer E. A new ultra-pressure liquid chromatography method for the determination of biogenic amines in cheese. J. Chromatogr. A. 2010;1217:3251–3257. doi: 10.1016/j.chroma.2009.09.027. PubMed DOI

Reguant C., Araque I., Bordons A. Beneficial Microbes in Fermented and Functional Foods. CRC Press; Boca Raton, FL, USA: 2014. Role of lactic acid bacteria in wine.

Kalac P., Krausova P. A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods. Food Chem. 2005;90:219–230. doi: 10.1016/j.foodchem.2004.03.044. DOI

Bardocz S., Duguid T.J., Brown D.S., Grant G., Pusztai A., White A., Ralph A. The importance of dietary polyamines in cell regeneration and growth. Br. J. Nutr. 1995;73:819–828. doi: 10.1079/BJN19950087. PubMed DOI

Linares D.M., del Rio B., Redruello B., Ladero V., Martin M.C., Fernandez M., Ruas-Madiedo P., Alvarez M.A. Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chem. 2016;197:658–663. doi: 10.1016/j.foodchem.2015.11.013. PubMed DOI

Middlebrooks B.L., Toom P.M., Douglas W.L., Harrison R.E., McDowell S. Effects of storage time and temperature in the microflora and amine development in spanish mackrel (scomberomorus-maculatus) J. Food Sci. 1988;53:1024–1029. doi: 10.1111/j.1365-2621.1988.tb13522.x. DOI

Dulphy J.P., VanOs M. Control of voluntary intake of precision-chopped silages by ruminants: A review. Reprod. Nutr. Dev. 1996;36:113–135. doi: 10.1051/rnd:19960201. PubMed DOI

Steidlova S., Kalac P. Levels of biogenic amines in maize silages. Anim. Feed Sci. Technol. 2002;102:197–205. doi: 10.1016/S0377-8401(02)00217-1. DOI

Duniere L., Sindou J., Chaucheyras-Durand F., Chevallier I., Thevenot-Sergentet D. Silage processing and strategies to prevent persistence of undesirable microorganisms. Anim. Feed Sci. Technol. 2013;182:1–15. doi: 10.1016/j.anifeedsci.2013.04.006. DOI

Taylor S.L., Speckhard M.W. Isolation of histamine-producing bacteria from frozen tuna. Mar. Fish. Rev. 1983;45:35–39.

Tao Z.H., Sato M., Han Y.L., Tan Z.J., Yamaguchi T., Nakano T. A simple and rapid method for histamine analysis in fish and fishery products by TLC determination. Food Control. 2011;22:1154–1157. doi: 10.1016/j.foodcont.2010.12.014. DOI

Tang W.R., Ge S.L., Gao F., Wang G., Wang Q.J., He P.G., Fang Y.Z. On-line sample preconcentration technique based on a dynamic pH junction in CE-amperometric detection for the analysis of biogenic amines in urine. Electrophoresis. 2013;34:2041–2048. doi: 10.1002/elps.201300116. PubMed DOI

Cernei N., Heger Z., Kopel P., Skladanka J., Zitka O., Adam V., Kizek R. Isolation of biogenic amines using paramagnetic microparticles off-line coupled with ion exchange liquid chromatography. Chromatographia. 2014;77:1451–1459. doi: 10.1007/s10337-014-2731-8. DOI

Kim T.K., Lee J.I., Kim J.H., Mah J.H., Hwang H.J., Kim Y.W. Comparison of ELISA and HPLC methods for the determination of biogenic amines in commercial doenjang and gochujang. Food Sci. Biotechnol. 2011;20:1747–1750. doi: 10.1007/s10068-011-0241-0. DOI

Deng Y.H., Zhang H.S., Du X.L., Wang H. Quantification of biogenic amines in human plasma based on the derivatization with n-hydroxy-succinimidyl fluorescelin-o-acetate by high-performance liquid chromatography. J. Sep. Sci. 2008;31:990–998. doi: 10.1002/jssc.200700399. PubMed DOI

Bilgin B., Genccelep H. Determination of biogenic amines in fish products. Food Sci. Biotechnol. 2015;24:1907–1913. doi: 10.1007/s10068-015-0251-4. DOI

Zitka O., Cernei N., Heger Z., Matousek M., Kopel P., Kynicky J., Masarik M., Kizek R., Adam V. Microfluidic chip coupled with modified paramagnetic particles for sarcosine isolation in urine. Electrophoresis. 2013;34:2639–2647. doi: 10.1002/elps.201300114. PubMed DOI

He J.C., Huang M.Y., Wang D.M., Zhang Z.M., Li G.K. Magnetic separation techniques in sample preparation for biological analysis: A review. J. Pharm. Biomed. Anal. 2014;101:84–101. doi: 10.1016/j.jpba.2014.04.017. PubMed DOI

Heger Z., Cernei N., Guran R., Michalek P., Milosavljevic V., Kopel P., Zitka O., Kynicky J., Lany P., Adam V., et al. γ-Fe2O3 magnetic core functionalized with tetraethyl orthosilicate and 3-aminopropyl triethoxysilane for an isolation of H7N7 influenza serotype virions. Int. J. Electrochem. Sci. 2014;9:3374–3385.

Heger Z., Zitka J., Cernei N., Krizkova S., Sztalmachova M., Kopel P., Masarik M., Hodek P., Zitka O., Adam V., et al. 3D-printed biosensor with poly (dimethylsiloxane) reservoir for magnetic separation and quantum dots-based immunolabeling of metallothionein. Electrophoresis. 2015;36:1256–1264. doi: 10.1002/elps.201400559. PubMed DOI

Causon R. Validation of chromatographic methods in biomedical analysis—Viewpoint and discussion. J. Chromatogr. B. 1997;689:175–180. doi: 10.1016/S0378-4347(96)00297-6. PubMed DOI

Bugianesi R., Serafini M., Simone F., Wu D.Y., Meydani S., Ferro-Luzzi A., Azzini E., Maiani G. High-performance liquid chromatography with coulometric electrode array detector for the determination of quercetin levels in cells of the immune system. Anal. Biochem. 2000;284:296–300. doi: 10.1006/abio.2000.4697. PubMed DOI

Long G.L., Winefordner J.D. Limit of detection. Anal. Chem. 1983;55:712–724.

Busto O., Miracle M., Guasch J., Borrull F. Determination of biogenic amines in wines by high-performance liquid chromatography with on-column fluorescence derivatization. J. Chromatogr. A. 1997;757:311–318. doi: 10.1016/S0021-9673(96)00693-0. DOI

Oguri S., Watanabe S., Abe S. Determination of histamine and some other amines by high-performance capillary electrophoresis with on-line mode in-capillary derivatization. J. Chromatogr. A. 1997;790:177–183. doi: 10.1016/S0021-9673(97)00719-X. DOI

Sadain S.K., Koropchak J.A. Condensation nucleation light scattering detection for biogenic amines separated by ion-exchange chromatography. J. Chromatogr. A. 1999;844:111–118. doi: 10.1016/S0021-9673(99)00387-8. PubMed DOI

Sadain S.K., Koropchak J.A. Condensation nucleation light scattering detection (CNLSD) for ion chromatography. J. Liq. Chromatogr. Relat. Technol. 1999;22:799–811. doi: 10.1081/JLC-100101699. PubMed DOI

Magro M., Sinigaglia G., Nodari L., Tucek J., Polakova K., Marusak Z., Cardillo S., Salviulo G., Russo U., Stevanato R., et al. Charge binding of rhodamine derivative to OH− stabilized nanomaghemite: Universal nanocarrier for construction of magnetofluorescent biosensors. Acta Biomater. 2012;8:2068–2076. doi: 10.1016/j.actbio.2012.02.005. PubMed DOI

Kopel P., Wawrzak D., Langer V., Cihalova K., Chudobova D., Vesely R., Adam V., Kizek R. Biological activity and molecular structures of bis (benzimidazole) and trithiocyanurate complexes. Molecules. 2015;20:10360–10376. doi: 10.3390/molecules200610360. PubMed DOI PMC

De Robertis A., De Stefano C., Gianguzza A., Sammartano S. Binding of polyanions by biogenic amines. I. Formation and stability of protonated putrescine and cadaverine complexes with inorganic anions. Talanta. 1998;46:1085–1093. doi: 10.1016/S0039-9140(97)00388-3. PubMed DOI

Karamani A.A., Douvalis A.P., Stalikas C.D. Zero-valent iron/iron oxide-oxyhydroxide/graphene as a magnetic sorbent for the enrichment of polychlorinated biphenyls, polyaromatic hydrocarbons and phthalates prior to gas chromatography-mass spectrometry. J. Chromatogr. A. 2013;1271:1–9. doi: 10.1016/j.chroma.2012.11.018. PubMed DOI

Pamme N. Magnetic Nanoparticles. CRC Press; Boca Raton, FL, USA: 2012. Magnetic nanoparticles in lab-on-a-chip devices.

Issadore D., Park Y.I., Shao H., Min C., Lee K., Liong M., Weissleder R., Lee H. Magnetic sensing technology for molecular analyses. Lab Chip. 2014;14:2385–2397. doi: 10.1039/c4lc00314d. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace