Determination of Histamine in Silages Using Nanomaghemite Core (γ-Fe₂O₃)-Titanium Dioxide Shell Nanoparticles Off-Line Coupled with Ion Exchange Chromatography
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27626434
PubMed Central
PMC5036737
DOI
10.3390/ijerph13090904
PII: ijerph13090904
Knihovny.cz E-zdroje
- Klíčová slova
- aminoacids, biogenic amines, magnetic-particles-based separation, plant, specific isolation,
- MeSH
- biogenní aminy MeSH
- chromatografie iontoměničová metody MeSH
- histamin analýza MeSH
- nanočástice chemie MeSH
- siláž analýza MeSH
- titan chemie MeSH
- železité sloučeniny chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biogenní aminy MeSH
- histamin MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
- železité sloučeniny MeSH
The presence of biogenic amines is a hallmark of degraded food and its products. Herein, we focused on the utilization of magnetic nanoparticles off-line coupled with ion exchange chromatography with post-column ninhydrin derivatization and Vis detection for histamine (Him) separation and detection. Primarily, we described the synthesis of magnetic nanoparticles with nanomaghemite core (γ-Fe₂O₃) functionalized with titanium dioxide and, then, applied these particles to specific isolation of Him. To obtain further insight into interactions between paramagnetic particles' (PMP) surface and Him, a scanning electron microscope was employed. It was shown that binding of histamine causes an increase of relative current response of deprotonated PMPs, which confirmed formation of Him-PMPs clusters. The recovery of the isolation showed that titanium dioxide-based particles were able to bind and preconcentrate Him with recovery exceeding 90%. Finally, we successfully carried out the analyses of real samples obtained from silage. We can conclude that our modified particles are suitable for Him isolation, and thus may serve as the first isolation step of Him from biological samples, as it is demonstrated on alfalfa seed variety Tereza silage.
Zobrazit více v PubMed
Sirocchi V., Caprioli G., Cecchini C., Coman M.M., Cresci A., Maggi F., Papa F., Ricciutelli M., Vittori S., Sagratini G. Biogenic amines as freshness index of meat wrapped in a new active packaging system formulated with essential oils of rosmarinus officinalis. Int. J. Food Sci. Nutr. 2013;64:921–928. doi: 10.3109/09637486.2013.809706. PubMed DOI
Agostinelli E., Arancia G., Dalla Vedova L., Belli F., Marra M., Salvi M., Toninello A. The biological functions of polyamine oxidation products by amine oxidases: Perspectives of clinical applications. Amino Acids. 2004;27:347–358. doi: 10.1007/s00726-004-0114-4. PubMed DOI
Mayer H.K., Fiechter G., Fischer E. A new ultra-pressure liquid chromatography method for the determination of biogenic amines in cheese. J. Chromatogr. A. 2010;1217:3251–3257. doi: 10.1016/j.chroma.2009.09.027. PubMed DOI
Reguant C., Araque I., Bordons A. Beneficial Microbes in Fermented and Functional Foods. CRC Press; Boca Raton, FL, USA: 2014. Role of lactic acid bacteria in wine.
Kalac P., Krausova P. A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods. Food Chem. 2005;90:219–230. doi: 10.1016/j.foodchem.2004.03.044. DOI
Bardocz S., Duguid T.J., Brown D.S., Grant G., Pusztai A., White A., Ralph A. The importance of dietary polyamines in cell regeneration and growth. Br. J. Nutr. 1995;73:819–828. doi: 10.1079/BJN19950087. PubMed DOI
Linares D.M., del Rio B., Redruello B., Ladero V., Martin M.C., Fernandez M., Ruas-Madiedo P., Alvarez M.A. Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chem. 2016;197:658–663. doi: 10.1016/j.foodchem.2015.11.013. PubMed DOI
Middlebrooks B.L., Toom P.M., Douglas W.L., Harrison R.E., McDowell S. Effects of storage time and temperature in the microflora and amine development in spanish mackrel (scomberomorus-maculatus) J. Food Sci. 1988;53:1024–1029. doi: 10.1111/j.1365-2621.1988.tb13522.x. DOI
Dulphy J.P., VanOs M. Control of voluntary intake of precision-chopped silages by ruminants: A review. Reprod. Nutr. Dev. 1996;36:113–135. doi: 10.1051/rnd:19960201. PubMed DOI
Steidlova S., Kalac P. Levels of biogenic amines in maize silages. Anim. Feed Sci. Technol. 2002;102:197–205. doi: 10.1016/S0377-8401(02)00217-1. DOI
Duniere L., Sindou J., Chaucheyras-Durand F., Chevallier I., Thevenot-Sergentet D. Silage processing and strategies to prevent persistence of undesirable microorganisms. Anim. Feed Sci. Technol. 2013;182:1–15. doi: 10.1016/j.anifeedsci.2013.04.006. DOI
Taylor S.L., Speckhard M.W. Isolation of histamine-producing bacteria from frozen tuna. Mar. Fish. Rev. 1983;45:35–39.
Tao Z.H., Sato M., Han Y.L., Tan Z.J., Yamaguchi T., Nakano T. A simple and rapid method for histamine analysis in fish and fishery products by TLC determination. Food Control. 2011;22:1154–1157. doi: 10.1016/j.foodcont.2010.12.014. DOI
Tang W.R., Ge S.L., Gao F., Wang G., Wang Q.J., He P.G., Fang Y.Z. On-line sample preconcentration technique based on a dynamic pH junction in CE-amperometric detection for the analysis of biogenic amines in urine. Electrophoresis. 2013;34:2041–2048. doi: 10.1002/elps.201300116. PubMed DOI
Cernei N., Heger Z., Kopel P., Skladanka J., Zitka O., Adam V., Kizek R. Isolation of biogenic amines using paramagnetic microparticles off-line coupled with ion exchange liquid chromatography. Chromatographia. 2014;77:1451–1459. doi: 10.1007/s10337-014-2731-8. DOI
Kim T.K., Lee J.I., Kim J.H., Mah J.H., Hwang H.J., Kim Y.W. Comparison of ELISA and HPLC methods for the determination of biogenic amines in commercial doenjang and gochujang. Food Sci. Biotechnol. 2011;20:1747–1750. doi: 10.1007/s10068-011-0241-0. DOI
Deng Y.H., Zhang H.S., Du X.L., Wang H. Quantification of biogenic amines in human plasma based on the derivatization with n-hydroxy-succinimidyl fluorescelin-o-acetate by high-performance liquid chromatography. J. Sep. Sci. 2008;31:990–998. doi: 10.1002/jssc.200700399. PubMed DOI
Bilgin B., Genccelep H. Determination of biogenic amines in fish products. Food Sci. Biotechnol. 2015;24:1907–1913. doi: 10.1007/s10068-015-0251-4. DOI
Zitka O., Cernei N., Heger Z., Matousek M., Kopel P., Kynicky J., Masarik M., Kizek R., Adam V. Microfluidic chip coupled with modified paramagnetic particles for sarcosine isolation in urine. Electrophoresis. 2013;34:2639–2647. doi: 10.1002/elps.201300114. PubMed DOI
He J.C., Huang M.Y., Wang D.M., Zhang Z.M., Li G.K. Magnetic separation techniques in sample preparation for biological analysis: A review. J. Pharm. Biomed. Anal. 2014;101:84–101. doi: 10.1016/j.jpba.2014.04.017. PubMed DOI
Heger Z., Cernei N., Guran R., Michalek P., Milosavljevic V., Kopel P., Zitka O., Kynicky J., Lany P., Adam V., et al. γ-Fe2O3 magnetic core functionalized with tetraethyl orthosilicate and 3-aminopropyl triethoxysilane for an isolation of H7N7 influenza serotype virions. Int. J. Electrochem. Sci. 2014;9:3374–3385.
Heger Z., Zitka J., Cernei N., Krizkova S., Sztalmachova M., Kopel P., Masarik M., Hodek P., Zitka O., Adam V., et al. 3D-printed biosensor with poly (dimethylsiloxane) reservoir for magnetic separation and quantum dots-based immunolabeling of metallothionein. Electrophoresis. 2015;36:1256–1264. doi: 10.1002/elps.201400559. PubMed DOI
Causon R. Validation of chromatographic methods in biomedical analysis—Viewpoint and discussion. J. Chromatogr. B. 1997;689:175–180. doi: 10.1016/S0378-4347(96)00297-6. PubMed DOI
Bugianesi R., Serafini M., Simone F., Wu D.Y., Meydani S., Ferro-Luzzi A., Azzini E., Maiani G. High-performance liquid chromatography with coulometric electrode array detector for the determination of quercetin levels in cells of the immune system. Anal. Biochem. 2000;284:296–300. doi: 10.1006/abio.2000.4697. PubMed DOI
Long G.L., Winefordner J.D. Limit of detection. Anal. Chem. 1983;55:712–724.
Busto O., Miracle M., Guasch J., Borrull F. Determination of biogenic amines in wines by high-performance liquid chromatography with on-column fluorescence derivatization. J. Chromatogr. A. 1997;757:311–318. doi: 10.1016/S0021-9673(96)00693-0. DOI
Oguri S., Watanabe S., Abe S. Determination of histamine and some other amines by high-performance capillary electrophoresis with on-line mode in-capillary derivatization. J. Chromatogr. A. 1997;790:177–183. doi: 10.1016/S0021-9673(97)00719-X. DOI
Sadain S.K., Koropchak J.A. Condensation nucleation light scattering detection for biogenic amines separated by ion-exchange chromatography. J. Chromatogr. A. 1999;844:111–118. doi: 10.1016/S0021-9673(99)00387-8. PubMed DOI
Sadain S.K., Koropchak J.A. Condensation nucleation light scattering detection (CNLSD) for ion chromatography. J. Liq. Chromatogr. Relat. Technol. 1999;22:799–811. doi: 10.1081/JLC-100101699. PubMed DOI
Magro M., Sinigaglia G., Nodari L., Tucek J., Polakova K., Marusak Z., Cardillo S., Salviulo G., Russo U., Stevanato R., et al. Charge binding of rhodamine derivative to OH− stabilized nanomaghemite: Universal nanocarrier for construction of magnetofluorescent biosensors. Acta Biomater. 2012;8:2068–2076. doi: 10.1016/j.actbio.2012.02.005. PubMed DOI
Kopel P., Wawrzak D., Langer V., Cihalova K., Chudobova D., Vesely R., Adam V., Kizek R. Biological activity and molecular structures of bis (benzimidazole) and trithiocyanurate complexes. Molecules. 2015;20:10360–10376. doi: 10.3390/molecules200610360. PubMed DOI PMC
De Robertis A., De Stefano C., Gianguzza A., Sammartano S. Binding of polyanions by biogenic amines. I. Formation and stability of protonated putrescine and cadaverine complexes with inorganic anions. Talanta. 1998;46:1085–1093. doi: 10.1016/S0039-9140(97)00388-3. PubMed DOI
Karamani A.A., Douvalis A.P., Stalikas C.D. Zero-valent iron/iron oxide-oxyhydroxide/graphene as a magnetic sorbent for the enrichment of polychlorinated biphenyls, polyaromatic hydrocarbons and phthalates prior to gas chromatography-mass spectrometry. J. Chromatogr. A. 2013;1271:1–9. doi: 10.1016/j.chroma.2012.11.018. PubMed DOI
Pamme N. Magnetic Nanoparticles. CRC Press; Boca Raton, FL, USA: 2012. Magnetic nanoparticles in lab-on-a-chip devices.
Issadore D., Park Y.I., Shao H., Min C., Lee K., Liong M., Weissleder R., Lee H. Magnetic sensing technology for molecular analyses. Lab Chip. 2014;14:2385–2397. doi: 10.1039/c4lc00314d. PubMed DOI PMC