Sarcosine is a prostate epigenetic modifier that elicits aberrant methylation patterns through the SAMe-Dnmts axis

. 2019 May ; 13 (5) : 1002-1017. [epub] 20190309

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30628163

DNA hypermethylation is one of the most common epigenetic modifications in prostate cancer (PCa). Several studies have delineated sarcosine as a PCa oncometabolite that increases the migration of malignant prostate cells while decreasing their doubling time. Here, we show that incubation of prostate cells with sarcosine elicited the upregulation of sarcosine N-demethylation enzymes, sarcosine dehydrogenase and pipecolic acid oxidase. This process was accompanied by a considerable increase in the production of the major methyl-donor S-adenosylmethionine (SAMe), together with an elevation of cellular methylation potential. Global DNA methylation analyses revealed increases in methylated CpG islands in distinct prostate cell lines incubated with sarcosine, but not in cells of nonprostate origin. This phenomenon was further associated with marked upregulation of DNA methyltransferases (Dnmts). Epigenetic changes were recapitulated through blunting of Dnmts using the hypomethylating agent 5-azacytidine, which was able to inhibit sarcosine-induced migration of prostate cells. Moreover, spatial mapping revealed concomitant increases in sarcosine, SAMe and Dnmt1 in histologically confirmed malignant prostate tissue, but not in adjacent or nonmalignant tissue, which is in line with the obtained in vitro data. In summary, we show here for the first time that sarcosine acts as an epigenetic modifier of prostate cells and that this may contribute to its oncometabolic role.

Zobrazit více v PubMed

Cernei N, Lackova Z, Guran R, Hynek D, Skladanka J, Horky P, Zitka O and Adam V (2016) Determination of histamine in silages using nanomaghemite core (γ‐Fe(2)O(3))‐titanium dioxide shell nanoparticles off‐line coupled with ion exchange chromatography. Int J Environ Res Public Health 13, 904. PubMed PMC

Cha YJ, Kim DH, Jung WH and Koo JS (2014) Expression of sarcosine metabolism‐related proteins according to metastatic site in breast cancer. Int J Clin Exp Pathol 7, 7824–7833. PubMed PMC

Chen MF, Chen WC, Chang YJ, Wu CF and Wu CT (2010) Role of DNA methyltransferase 1 in hormone‐resistant prostate cancer. J Mol Med 88, 953–962. PubMed

Costello LC, Feng P, Milon B, Tan M and Franklin RB (2004) Role of zinc in the pathogenesis and treatment of prostate cancer: critical issues to resolve. Prostate Cancer Prostatic Dis 7, 111–117. PubMed PMC

Dobosy JR, Roberts JLW, Fu VX and Jarrard DF (2007) The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia. J Urol 177, 822–831. PubMed

Fatemi M, Hermann A, Gowher H and Jeltsch A (2002) Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. Eur J Biochem 269, 4981–4984. PubMed

Festuccia C, Gravina GL, D'Alessandro AM, Muzi P, Millimaggi D, Dolo V, Ricevuto E, Vicentini C and Bologna M (2009) Azacitidine improves antitumor effects of docetaxel and cisplatin in aggressive prostate cancer models. Endocr Relat Cancer 16, 401–413. PubMed

Frauer C, Rottach A, Meilinger D, Bultmann S, Fellinger K, Hasenoder S, Wang MX, Qin WH, Soding J, Spada F et al (2011) Different binding properties and function of CXXC zinc finger domains in Dnmt1 and Tet1. PLoS One 6, e16627. PubMed PMC

Geybels MS, Zhao SS, Wong CJ, Bibikova M, Klotzle B, Wu M, Ostrander EA, Fan JB, Feng ZD and Stanford JL (2015) Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue. Prostate 75, 1941–1950. PubMed PMC

Haase H, Hebel S, Engelhardt G and Rink L (2006) Flow cytometric measurement of labile zinc in peripheral blood mononuclear cells. Anal Biochem 352, 222–230. PubMed

Hanahan D and Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144, 646–674. PubMed

Heger Z, Gumulec J, Cernei N, Polanska H, Raudenska M, Masarik M, Eckschlager T, Stiborova M, Adam V and Kizek R (2016a) Relation of exposure to amino acids involved in sarcosine metabolic pathway on behavior of non‐tumor and malignant prostatic cell lines. Prostate 76, 679–690. PubMed

Heger Z, Rodrigo MAM, Michalek P, Polanska H, Masarik M, Vit V, Plevova M, Pacik D, Eckschlager T, Stiborova M et al (2016b) Sarcosine up‐regulates expression of genes involved in cell cycle progression of metastatic models of prostate cancer. PLoS One 11, 1–20. PubMed PMC

Hoque MO, Topaloglu O, Begum S, Henrique R, Rosenbaum E, Van Criekinge W, Westra WH and Sidransky D (2005) Quantitative methylation‐specific polymerase chain reaction gene patterns in urine sediment distinguish prostate cancer patients from control subjects. J Clin Oncol 23, 6569–6575. PubMed

Janeway KA, Kim SY, Lodish M, Nose V, Rustin P, Gaal J, Dahia PLM, Liegl B, Ball ER, Raygada M et al (2011) Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci USA 108, 314–318. PubMed PMC

Jeronimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JWF, Clark SJ, Henrique R, Nelson WG and Shariat SF (2011) Epigenetics in prostate cancer: biologic and clinical relevance. Eur Urol 60, 753–766. PubMed

Jones PA and Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3, 415–428. PubMed

Jones PA and Baylin SB (2007) The epigenomics of cancer. Cell 128, 683–692. PubMed PMC

Khan AP, Rajendiran TM, Ateeq B, Asangani IA, Athanikar JN, Yocum AK, Mehra R, Siddiqui J, Palapattu G, Wei JT et al (2013) The role of sarcosine metabolism in prostate cancer progression. Neoplasia 15, 491–501. PubMed PMC

Kinoshita H, Shi Y, Sandefur C, Meisner LF, Chang CS, Choon A, Reznikoff CR, Bova GS, Friedl A and Jarrard DF (2000) Methylation of the androgen receptor minimal promoter silences transcription in human prostate cancer. Cancer Res 60, 3623–3630. PubMed

Kiziltepe T, Hideshima T, Catley L, Raje N, Yasui H, Shiraishi N, Okawa Y, Ikeda H, Vallet S, Pozzi S et al (2007) 5‐Azacytidine, a DNA methyltransferase inhibitor, induces ATR‐mediated DNA double‐strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. Mol Cancer Ther 6, 1718–1727. PubMed

Li LC and Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18, 1427–1431. PubMed

Merlos Rodrigo MA, Strmiska V, Horackova E, Buchtelova H, Michalek P, Stiborova M, Eckschlager T, Adam V and Heger Z (2017) Sarcosine influences apoptosis and growth of prostate cells via cell‐type specific regulation of distinct sets of genes. Prostate 78, 104–112. PubMed

Nowotarski SL, Woster PM and Casero RA (2013) Polyamines and cancer: implications for chemotherapy and chemoprevention. Expert Rev Mol Med 15, 21. PubMed PMC

Otani J, Nankumo T, Arita K, Inamoto S, Ariyoshi M and Shirakawa M (2009) Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX‐DNMT3‐DNMT3L domain. EMBO Rep 10, 1235–1241. PubMed PMC

Patra SK, Patra A, Zhao H and Dahiya R (2002) DNA methyltransferase and demethylase in human prostate cancer. Mol Carcinog 33, 163–171. PubMed

Piert M, Shao X, Raffel D, Davenport MS, Montgomery J, Kunju LP, Hockley BG, Siddiqui J, Scott PJH, Chinnaiyan AM et al (2017) Preclinical evaluation of (11)C‐sarcosine as a substrate of proton‐coupled amino acid transporters and first human application in prostate cancer. J Nucl Med 58, 1216–1223. PubMed PMC

Sciacovelli M, Goncalves E, Johnson TI, Zecchini VR, da Costa ASH, Gaude E, Drubbel AV, Theobald SJ, Abbo SR, Tran MGB et al (2016) Fumarate is an epigenetic modifier that elicits epithelial‐to‐mesenchymal transition. Nature 537, 544–547. PubMed PMC

Sibani S, Melnyk S, Pogribny IP, Wang W, Hiou‐Tim F, Deng LY, Trasler J, James SJ and Rozen R (2002) Studies of methionine cycle intermediates (SAM, SAH), DNA methylation and the impact of folate deficiency on tumor numbers in Min mice. Carcinogenesis 23, 61–65. PubMed

Song YH, Shiota M, Kuroiwa K, Naito S and Oda Y (2011) The important role of glycine N‐methyltransferase in the carcinogenesis and progression of prostate cancer. Mod Pathol 24, 1272–1280. PubMed

Sonpavde G, Aparicio AM, Delaune R, Garbo LE, Rousey SR, Weinstein RE, Williams A, Zhan F, Boehm KA, Asmar L et al (2008) Azacitidine for castration‐resistant prostate cancer progressing on combined androgen blockade. J Clin Oncol 26, 1.

Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu JD, Laxman B, Mehra R, Lonigro RJ, Li Y et al (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914. PubMed PMC

Toh TB, Lim JJ and Chow EKH (2017) Epigenetics in cancer stem cells. Mol Cancer 16, 1–20. PubMed PMC

Ulanovskaya OA, Zuhl AM and Cravatt BF (2013) NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink. Nat Chem Biol 9, 300–306. PubMed PMC

Valdes‐Mora F and Clark SJ (2015) Prostate cancer epigenetic biomarkers: next‐generation technologies. Oncogene 34, 1609–1618. PubMed

Valdez CD, Kunju L, Daignault S, Wojno KJ and Day ML (2013) The E2F1/DNMT1 axis is associated with the development of AR negative castration resistant prostate cancer. Prostate 73, 1776–1785. PubMed

Wallwork JC and Duerre JA (1985) Effect of zinc‐deficiency on methionine metabolism, methylation reactions and protein‐synthesis in isolated perfused rat‐liver. J Nutr 115, 252–262. PubMed

van der Wijst MGP, Venkiteswaran M, Chen H, Xu GL, Plosch T and Rots MG (2015) Local chromatin microenvironment determines DNMT activity: from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase. Epigenetics 10, 671–676. PubMed PMC

Wilson FA, van den Borne J, Calder AG, O'Kennedy N, Holtrop G, Rees WD and Lobley GE (2009) Tissue methionine cycle activity and homocysteine metabolism in female rats: impact of dietary methionine and folate plus choline. Am J Physiol Endocrinol Metab 296, 702–713. PubMed

Yoon JK, Kim DH and Koo JS (2014) Implications of differences in expression of sarcosine metabolism‐related proteins according to the molecular subtype of breast cancer. J Transl Med 12, 149. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...