Sarcosine is a prostate epigenetic modifier that elicits aberrant methylation patterns through the SAMe-Dnmts axis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30628163
PubMed Central
PMC6487735
DOI
10.1002/1878-0261.12439
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, Dnmts, SAMe, epigenetics, prostate cancer, sarcosine,
- MeSH
- buněčné linie MeSH
- CpG ostrůvky * MeSH
- epigeneze genetická účinky léků MeSH
- lidé MeSH
- nádory prostaty metabolismus patologie MeSH
- prostata metabolismus patologie MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- sarkosin farmakologie MeSH
- upregulace účinky léků MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- sarkosin MeSH
DNA hypermethylation is one of the most common epigenetic modifications in prostate cancer (PCa). Several studies have delineated sarcosine as a PCa oncometabolite that increases the migration of malignant prostate cells while decreasing their doubling time. Here, we show that incubation of prostate cells with sarcosine elicited the upregulation of sarcosine N-demethylation enzymes, sarcosine dehydrogenase and pipecolic acid oxidase. This process was accompanied by a considerable increase in the production of the major methyl-donor S-adenosylmethionine (SAMe), together with an elevation of cellular methylation potential. Global DNA methylation analyses revealed increases in methylated CpG islands in distinct prostate cell lines incubated with sarcosine, but not in cells of nonprostate origin. This phenomenon was further associated with marked upregulation of DNA methyltransferases (Dnmts). Epigenetic changes were recapitulated through blunting of Dnmts using the hypomethylating agent 5-azacytidine, which was able to inhibit sarcosine-induced migration of prostate cells. Moreover, spatial mapping revealed concomitant increases in sarcosine, SAMe and Dnmt1 in histologically confirmed malignant prostate tissue, but not in adjacent or nonmalignant tissue, which is in line with the obtained in vitro data. In summary, we show here for the first time that sarcosine acts as an epigenetic modifier of prostate cells and that this may contribute to its oncometabolic role.
Central European Institute of Technology Brno University of Technology Czech Republic
Central European Institute of Technology Mendel University in Brno Czech Republic
Department of Biochemistry Faculty of Science Charles University Prague 2 Czech Republic
Department of Chemistry and Biochemistry Mendel University in Brno Czech Republic
Department of Food Chemistry and Toxicology Technical University of Berlin Germany
Department of Pathology University Hospital Brno Czech Republic
Department of Urology University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Cernei N, Lackova Z, Guran R, Hynek D, Skladanka J, Horky P, Zitka O and Adam V (2016) Determination of histamine in silages using nanomaghemite core (γ‐Fe(2)O(3))‐titanium dioxide shell nanoparticles off‐line coupled with ion exchange chromatography. Int J Environ Res Public Health 13, 904. PubMed PMC
Cha YJ, Kim DH, Jung WH and Koo JS (2014) Expression of sarcosine metabolism‐related proteins according to metastatic site in breast cancer. Int J Clin Exp Pathol 7, 7824–7833. PubMed PMC
Chen MF, Chen WC, Chang YJ, Wu CF and Wu CT (2010) Role of DNA methyltransferase 1 in hormone‐resistant prostate cancer. J Mol Med 88, 953–962. PubMed
Costello LC, Feng P, Milon B, Tan M and Franklin RB (2004) Role of zinc in the pathogenesis and treatment of prostate cancer: critical issues to resolve. Prostate Cancer Prostatic Dis 7, 111–117. PubMed PMC
Dobosy JR, Roberts JLW, Fu VX and Jarrard DF (2007) The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia. J Urol 177, 822–831. PubMed
Fatemi M, Hermann A, Gowher H and Jeltsch A (2002) Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. Eur J Biochem 269, 4981–4984. PubMed
Festuccia C, Gravina GL, D'Alessandro AM, Muzi P, Millimaggi D, Dolo V, Ricevuto E, Vicentini C and Bologna M (2009) Azacitidine improves antitumor effects of docetaxel and cisplatin in aggressive prostate cancer models. Endocr Relat Cancer 16, 401–413. PubMed
Frauer C, Rottach A, Meilinger D, Bultmann S, Fellinger K, Hasenoder S, Wang MX, Qin WH, Soding J, Spada F et al (2011) Different binding properties and function of CXXC zinc finger domains in Dnmt1 and Tet1. PLoS One 6, e16627. PubMed PMC
Geybels MS, Zhao SS, Wong CJ, Bibikova M, Klotzle B, Wu M, Ostrander EA, Fan JB, Feng ZD and Stanford JL (2015) Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue. Prostate 75, 1941–1950. PubMed PMC
Haase H, Hebel S, Engelhardt G and Rink L (2006) Flow cytometric measurement of labile zinc in peripheral blood mononuclear cells. Anal Biochem 352, 222–230. PubMed
Hanahan D and Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144, 646–674. PubMed
Heger Z, Gumulec J, Cernei N, Polanska H, Raudenska M, Masarik M, Eckschlager T, Stiborova M, Adam V and Kizek R (2016a) Relation of exposure to amino acids involved in sarcosine metabolic pathway on behavior of non‐tumor and malignant prostatic cell lines. Prostate 76, 679–690. PubMed
Heger Z, Rodrigo MAM, Michalek P, Polanska H, Masarik M, Vit V, Plevova M, Pacik D, Eckschlager T, Stiborova M et al (2016b) Sarcosine up‐regulates expression of genes involved in cell cycle progression of metastatic models of prostate cancer. PLoS One 11, 1–20. PubMed PMC
Hoque MO, Topaloglu O, Begum S, Henrique R, Rosenbaum E, Van Criekinge W, Westra WH and Sidransky D (2005) Quantitative methylation‐specific polymerase chain reaction gene patterns in urine sediment distinguish prostate cancer patients from control subjects. J Clin Oncol 23, 6569–6575. PubMed
Janeway KA, Kim SY, Lodish M, Nose V, Rustin P, Gaal J, Dahia PLM, Liegl B, Ball ER, Raygada M et al (2011) Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci USA 108, 314–318. PubMed PMC
Jeronimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JWF, Clark SJ, Henrique R, Nelson WG and Shariat SF (2011) Epigenetics in prostate cancer: biologic and clinical relevance. Eur Urol 60, 753–766. PubMed
Jones PA and Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3, 415–428. PubMed
Jones PA and Baylin SB (2007) The epigenomics of cancer. Cell 128, 683–692. PubMed PMC
Khan AP, Rajendiran TM, Ateeq B, Asangani IA, Athanikar JN, Yocum AK, Mehra R, Siddiqui J, Palapattu G, Wei JT et al (2013) The role of sarcosine metabolism in prostate cancer progression. Neoplasia 15, 491–501. PubMed PMC
Kinoshita H, Shi Y, Sandefur C, Meisner LF, Chang CS, Choon A, Reznikoff CR, Bova GS, Friedl A and Jarrard DF (2000) Methylation of the androgen receptor minimal promoter silences transcription in human prostate cancer. Cancer Res 60, 3623–3630. PubMed
Kiziltepe T, Hideshima T, Catley L, Raje N, Yasui H, Shiraishi N, Okawa Y, Ikeda H, Vallet S, Pozzi S et al (2007) 5‐Azacytidine, a DNA methyltransferase inhibitor, induces ATR‐mediated DNA double‐strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. Mol Cancer Ther 6, 1718–1727. PubMed
Li LC and Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18, 1427–1431. PubMed
Merlos Rodrigo MA, Strmiska V, Horackova E, Buchtelova H, Michalek P, Stiborova M, Eckschlager T, Adam V and Heger Z (2017) Sarcosine influences apoptosis and growth of prostate cells via cell‐type specific regulation of distinct sets of genes. Prostate 78, 104–112. PubMed
Nowotarski SL, Woster PM and Casero RA (2013) Polyamines and cancer: implications for chemotherapy and chemoprevention. Expert Rev Mol Med 15, 21. PubMed PMC
Otani J, Nankumo T, Arita K, Inamoto S, Ariyoshi M and Shirakawa M (2009) Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX‐DNMT3‐DNMT3L domain. EMBO Rep 10, 1235–1241. PubMed PMC
Patra SK, Patra A, Zhao H and Dahiya R (2002) DNA methyltransferase and demethylase in human prostate cancer. Mol Carcinog 33, 163–171. PubMed
Piert M, Shao X, Raffel D, Davenport MS, Montgomery J, Kunju LP, Hockley BG, Siddiqui J, Scott PJH, Chinnaiyan AM et al (2017) Preclinical evaluation of (11)C‐sarcosine as a substrate of proton‐coupled amino acid transporters and first human application in prostate cancer. J Nucl Med 58, 1216–1223. PubMed PMC
Sciacovelli M, Goncalves E, Johnson TI, Zecchini VR, da Costa ASH, Gaude E, Drubbel AV, Theobald SJ, Abbo SR, Tran MGB et al (2016) Fumarate is an epigenetic modifier that elicits epithelial‐to‐mesenchymal transition. Nature 537, 544–547. PubMed PMC
Sibani S, Melnyk S, Pogribny IP, Wang W, Hiou‐Tim F, Deng LY, Trasler J, James SJ and Rozen R (2002) Studies of methionine cycle intermediates (SAM, SAH), DNA methylation and the impact of folate deficiency on tumor numbers in Min mice. Carcinogenesis 23, 61–65. PubMed
Song YH, Shiota M, Kuroiwa K, Naito S and Oda Y (2011) The important role of glycine N‐methyltransferase in the carcinogenesis and progression of prostate cancer. Mod Pathol 24, 1272–1280. PubMed
Sonpavde G, Aparicio AM, Delaune R, Garbo LE, Rousey SR, Weinstein RE, Williams A, Zhan F, Boehm KA, Asmar L et al (2008) Azacitidine for castration‐resistant prostate cancer progressing on combined androgen blockade. J Clin Oncol 26, 1.
Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu JD, Laxman B, Mehra R, Lonigro RJ, Li Y et al (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914. PubMed PMC
Toh TB, Lim JJ and Chow EKH (2017) Epigenetics in cancer stem cells. Mol Cancer 16, 1–20. PubMed PMC
Ulanovskaya OA, Zuhl AM and Cravatt BF (2013) NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink. Nat Chem Biol 9, 300–306. PubMed PMC
Valdes‐Mora F and Clark SJ (2015) Prostate cancer epigenetic biomarkers: next‐generation technologies. Oncogene 34, 1609–1618. PubMed
Valdez CD, Kunju L, Daignault S, Wojno KJ and Day ML (2013) The E2F1/DNMT1 axis is associated with the development of AR negative castration resistant prostate cancer. Prostate 73, 1776–1785. PubMed
Wallwork JC and Duerre JA (1985) Effect of zinc‐deficiency on methionine metabolism, methylation reactions and protein‐synthesis in isolated perfused rat‐liver. J Nutr 115, 252–262. PubMed
van der Wijst MGP, Venkiteswaran M, Chen H, Xu GL, Plosch T and Rots MG (2015) Local chromatin microenvironment determines DNMT activity: from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase. Epigenetics 10, 671–676. PubMed PMC
Wilson FA, van den Borne J, Calder AG, O'Kennedy N, Holtrop G, Rees WD and Lobley GE (2009) Tissue methionine cycle activity and homocysteine metabolism in female rats: impact of dietary methionine and folate plus choline. Am J Physiol Endocrinol Metab 296, 702–713. PubMed
Yoon JK, Kim DH and Koo JS (2014) Implications of differences in expression of sarcosine metabolism‐related proteins according to the molecular subtype of breast cancer. J Transl Med 12, 149. PubMed PMC