Biological Activity and Molecular Structures of Bis(benzimidazole) and Trithiocyanurate Complexes

. 2015 Jun 04 ; 20 (6) : 10360-76. [epub] 20150604

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26053490

1-(1H-Benzimidazol-2-yl)-N-(1H-benzimidazol-2-ylmethyl)methanamine (abb) and 2-(1H-benzimidazol-2-ylmethylsulfanylmethyl)-1H-benzimidazole (tbb) have been prepared and characterized by elemental analysis. These bis(benzimidazoles) have been further used in combination with trithiocyanuric acid for the preparation of complexes. The crystal and molecular structures of two of them have been solved. Each nickel atom in the structure of trinuclear complex [Ni3(abb)3(H2O)3(μ-ttc)](ClO4)3·3H2O·EtOH (1), where ttcH3 = trithiocyanuric acid, is coordinated with three N atoms of abb, the N,S donor set of ttc anion and an oxygen of a water molecule. The crystal of [(tbbH2)(ttcH2)2(ttcH3)(H2O)] (2) is composed of a protonated bis(benzimidazole), two ttcH2 anions, ttcH3 and water. The structure is stabilized by a network of hydrogen bonds. These compounds were primarily synthesized for their potential antimicrobial activity and hence their possible use in the treatment of infections caused by bacteria or yeasts (fungi). The antimicrobial and antifungal activity of the prepared compounds have been evaluated on a wide spectrum of bacterial and yeast strains and clinical specimens isolated from patients with infectious wounds and the best antimicrobial properties were observed in strains after the use of ligand abb and complex 1, when at least 80% growth inhibition was achieved.

Zobrazit více v PubMed

Giovine A., Muraglia M., Florio M.A., Rosato A., Corbo F., Franchini C., Degennaro L., Musio B., Luisi R. Synthesis of Functionalized Arylaziridines as Potential Antimicrobial Agents. Molecules. 2014;19:11505–11519. doi: 10.3390/molecules190811505. PubMed DOI PMC

Ranjith P.K., Rajeesh P., Haridas K.R., Susanta N.K., Row T.N.G., Rishikesan R., Kumari N.S. Design and synthesis of positional isomers of 5 and 6-bromo-1-(phenyl)sulfonyl-2-(4-nitrophenoxy)methyl-1H-benzimidazoles as possible antimicrobial and antitubercular agents. Bioorg. Med. Chem. Lett. 2013;23:5228–5234. doi: 10.1016/j.bmcl.2013.06.072. PubMed DOI

Toro P., Klahn A.H., Pradines B., Lahoz F., Pascual A., Biot C., Arancibia R. Organometallic benzimidazoles: Synthesis, characterization and antimalarial activity. Inorg. Chem. Commun. 2013;35:126–129. doi: 10.1016/j.inoche.2013.06.019. DOI

Sondhi S.M., Rajvanshi S., Johar M., Bharti N., Azam A., Singh A.K. Anti-inflammatory, analgesic and antiamoebic activity evaluation of pyrimido 1,6-alpha benzimidazole derivatives synthesized by the reaction of ketoisothiocyanates with mono and diamines. Eur. J. Med. Chem. 2002;37:835–843. doi: 10.1016/S0223-5234(02)01403-4. PubMed DOI

Grassmann S., Sadek B., Ligneau X., Elz S., Ganellin C.R., Arrang J.M., Schwartz J.C., Stark H., Schunack W. Progress in the proxifan class: Heterocyclic congeners as novel potent and selective histamine H3-receptor antagonists. Eur. J. Pharm. Sci. 2002;15:367–378. doi: 10.1016/S0928-0987(02)00024-6. PubMed DOI

Haque R.A., Iqbal M.A., Asekunowo P., Majid A., Ahamed M.B.K., Umar M.I., Al-Rawi S.S., Al-Suede F.S.R. Synthesis, structure, anticancer, and antioxidant activity of para-xylyl linked bis-benzimidazolium salts and respective dinuclear Ag(I) N-heterocyclic carbene complexes (Part-II) Med. Chem. Res. 2013;22:4663–4676. doi: 10.1007/s00044-012-0461-8. DOI

Nile S.H., Kumar B., Park S.W. In Vitro Evaluation of Selected Benzimidazole Derivatives as an Antioxidant and Xanthine Oxidase Inhibitors. Chem. Biol. Drug Des. 2013;82:290–295. doi: 10.1111/cbdd.12141. PubMed DOI

Kralova V., Hanusova V., Stankova P., Knoppova K., Canova K., Skalova L. Antiproliferative effect of benzimidazole anthelmintics albendazole, ricobendazole, and flubendazole in intestinal cancer cell lines. Anti-Cancer Drugs. 2013;24:911–919. doi: 10.1097/CAD.0b013e3283648c69. PubMed DOI

Jain A., Sharma R., Chaturvedi S.C. A rational design, synthesis, characterization, and antihypertensive activities of some new substituted benzimidazoles. Med. Chem. Res. 2013;22:4622–4632. doi: 10.1007/s00044-012-0462-7. DOI

Beaulieu C., Wang Z.Y., Denis D., Greig G., Lamontagne S., O’Neill G., Slipetz D., Wang J. Benzimidazoles as new potent and selective DP antagonists for the treatment of allergic rhinitis. Bioorg. Med. Chem. Lett. 2004;14:3195–3199. doi: 10.1016/j.bmcl.2004.04.005. PubMed DOI

White A.W., Curtin N.J., Eastman B.W., Golding B.T., Hostomsky Z., Kyle S., Maegley K.A., Li J., Skalitzky D.J., Webber S.E., et al. Potentiation of cytotoxic drug activity in human tumour cell lines, by amine-substituted 2-arylbenzimidazole-4-carboxamide PARP-1 inhibitors. Bioorg. Med. Chem. Lett. 2004;14:2433–2437. doi: 10.1016/j.bmcl.2004.03.017. PubMed DOI

Kahveci B., Mentes E., Ozil M., Ulker S., Erturk M. An efficient synthesis of benzimidazoles via a microwave technique and evaluation of their biological activities. Mon. Chem. 2013;144:993–1001. doi: 10.1007/s00706-012-0916-0. DOI

Purushottamachar P., Godbole A.M., Gediya L.K., Martin M.S., Vasaitis T.S., Kwegyir-Afful A.K., Ramalingam S., Ates-Alagoz Z., Njar V.C.O. Systematic Structure Modifications of Multitarget Prostate Cancer Drug Candidate Galeterone To Produce Novel Androgen Receptor Down-Regulating Agents as an Approach to Treatment of Advanced Prostate Cancer. J. Med. Chem. 2013;56:4880–4898. doi: 10.1021/jm400048v. PubMed DOI PMC

Evans T.M., Gardiner J.M., Mahmood N., Smis M. Structure-activity relationships of anti-HIV-1 N-alkoxy- and N-allyloxy-benzimidazoles. Bioorg. Med. Chem. Lett. 1997;7:409–412. doi: 10.1016/S0960-894X(97)00022-X. DOI

Yoon Y.K., Ali M.A., Wei A.C., Choon T.S., Khaw K.Y., Murugaiyah V., Masand V.H., Osman H. Synthesis, characterization, and molecular docking analysis of novel benzimidazole derivatives as cholinesterase inhibitors. Bioorg. Chem. 2013;49:33–39. doi: 10.1016/j.bioorg.2013.06.008. PubMed DOI

Zhu J.M., Wu C.F., Li X.B., Wu G.S., Xie S., Hu Q.N., Deng Z.X., Zhu M.X., Hong X.C., Luo H.R. Synthesis, biological evaluation and molecular modeling of substituted 2-aminobenzimidazoles as novel inhibitors of acetylcholinesterase and butyrylcholinesterase. Bioorg. Med. Chem. 2013;21:4218–4224. doi: 10.1016/j.bmc.2013.05.001. PubMed DOI

Ceballos L., Virkel G., Elissondo C., Canton C., Canevari J., Murno G., Denegri G., Lanusse C., Alvarez L. A pharmacology-based comparison of the activity of albendazole and flubendazole against Echinococcus granulosus metacestode in sheep. Acta Trop. 2013;127:216–225. doi: 10.1016/j.actatropica.2013.05.004. PubMed DOI

Perez-Villanueva J., Hernandez-Campos A., Yepez-Mulia L., Mendez-Cuesta C., Mendez-Lucio O., Hernandez-Luis F., Castillo R. Synthesis and antiprotozoal activity of novel 2-[2-(1H-imidazol-1-yl)ethyl sulfanyl]-1H-benzimidazole derivatives. Bioorg. Med. Chem. Lett. 2013;23:4221–4224. doi: 10.1016/j.bmcl.2013.05.012. PubMed DOI

Henke K.R., Robertson D., Krepps M.K., Atwood D.A. Chemistry and stability of precipitates from aqueous solutions of 2,4,6-trimercaptotriazine, trisodium salt, nonahydrate (TMT-55) and mercury (II) chloride. Water Res. 2000;34:3005–3013. doi: 10.1016/S0043-1354(00)00038-5. DOI

Matlock M.M., Henke K.R., Atwood D.A., Robertson D. Aqueous leaching properties and environmental implications of cadmium, lead and zinc trimercaptotriazine (TMT) compounds. Water Res. 2001;35:3649–3655. doi: 10.1016/S0043-1354(01)00091-4. PubMed DOI

Rosso V.W., Lust D.A., Bernot P.J., Grosso J.A., Modi S.P., Rusowicz A., Sedergran T.C., Simpson J.H., Srivastava S.K., Humora M.J., et al. Removal of palladium from organic reaction mixtures by trimercaptotriazine. Org. Process Res. Dev. 1997;1:311–314. doi: 10.1021/op970107f. DOI

Garrett C.E., Prasad K. The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions. Adv. Synth. Catal. 2004;346:889–900. doi: 10.1002/adsc.200404071. DOI

Chen W., Hong S., Xiang B., Luo H.Q., Li M., Li N.B. Corrosion inhibition of copper in hydrochloric acid by coverage with trithiocyanuric acid self-assembled monolayers. Corros. Eng. Sci. Technol. 2013;48:98–107. doi: 10.1179/1743278212Y.0000000053. DOI

Chen W., Hong S., Luo H.Q., Li N.B. Inhibition Effect of 2,4,6-Trimercapto-1,3,5-triazine Self-Assembled Monolayers on Copper Corrosion in NaCl Solution. J. Mater. Eng. Perform. 2014;23:527–537. doi: 10.1007/s11665-013-0788-4. DOI

Iltzsch M.H., Tankersley K.O. Structure-activity relationship of ligands of uracil phosphoribosyltransferase from toxoplasma-gondii. Biochem. Pharmacol. 1994;48:781–791. doi: 10.1016/0006-2952(94)90057-4. PubMed DOI

Kar S., Miller T.A., Chakraborty S., Sarkar B., Pradhan B., Sinha R.K., Kundu T., Ward M.D., Lahiri G.K. Synthesis, mixed valence aspects and non-linear optical properties of the triruthenium complexes [{(bpy)2RuII}3(L)]3+ and [{(phen)2RuII}3L3+ (bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline and L3− = 1,3,5-triazine-2,4,6-trithiol) Dalton Trans. 2003:2591–2596. doi: 10.1039/b302878j. DOI

Kar S., Pradhan B., Sinha K., Kundu T., Kodgire P., Rao K.K., Puranik V.G., Lahiri G.K. Synthesis, structure, redox, NLO and DNA interaction aspects of [{(L′–′′′)2RuII}3(mu3-L)]3+ and [(L′)2RuII(NC5H4S−)]+, L3− = 1,3,5-triazine-2,4,6-trithiolato, L′–′′′ = arylazopyridine. Dalton Trans. 2004;11:1752–1760. doi: 10.1039/b403332a. PubMed DOI

Aoki S., Zulkefeli M., Shiro M., Kimura E. New supramolecular trigonal prisms from zinc(II)-1,4,7,10-tetraazacyclododecane (cyclen) complexes and trithiocyanurate in aqueous solution. Proc. Natl. Acad. Sci. USA. 2002;99:4894–4899. doi: 10.1073/pnas.072635899. PubMed DOI PMC

Aoki S., Shiro M., Kimura E. A cuboctahedral supramolecular capsule by 4:4 self-assembly of tris(ZnII-cyclen) and trianionic trithiocyanurate in aqueous solution at neutral pH (cyclen = 1,4,7,10-tetraazacyclododecane) Chem. Eur. J. 2002;8:929–939. doi: 10.1002/1521-3765(20020215)8:4<929::AID-CHEM929>3.0.CO;2-Q. PubMed DOI

Zulkefeli M., Sogon T., Takeda K., Kimura E., Aoki S. Design and Synthesis of a Stable Supramolecular Trigonal Prism Formed by the Self-Assembly of a Linear Tetrakis(Zn2+-cyclen) Complex and Trianionic Trithiocyanuric Acid in Aqueous Solution and Its Complexation with DNA (Cyclen = 1,4,7,10-Tetraazacyclododecane) Inorg. Chem. 2009;48:9567–9578. PubMed

Kopel P., Dolezal K., Machala L., Langer V. Synthesis, characterization and screening of biological activity of Zn(II), Fe(II) and Mn(II) complexes with trithiocyanuric acid. Polyhedron. 2007;26:1583–1589. doi: 10.1016/j.poly.2006.11.022. DOI

Kopel P., Dolezal K., Langer V., Jun D., Adam V., Kuca K., Kizek R. Trithiocyanurate Complexes of Iron, Manganese and Nickel and Their Anticholinesterase Activity. Molecules. 2014;19:4338–4354. doi: 10.3390/molecules19044338. PubMed DOI PMC

Kopel P., Mrozinski J., Dolezal K., Langer V., Boca R., Bienko A., Pochaba A. Ferromagnetic Properties of a Trinuclear Nickel(II) Complex with a Trithiocyanurate Bridge. Eur. J. Inorg. Chem. 2009;36:5475–5482. doi: 10.1002/ejic.200900617. DOI

Ranganathan A., Pedireddi V.R., Rao C.N.R. Hydrothermal synthesis of organic channel structures: 1:1 Hydrogen-bonded adducts of melamine with cyanuric and trithiocyanuric acids. J. Am. Chem. Soc. 1999;121:1752–1753. doi: 10.1021/ja983928o. DOI

Nagarajan V., Pedireddi V.R. Preparation of Multiple Cocrystals of Trithiocyanuric Acid with Some N-Donor Compounds. Cryst. Growth Des. 2014;14:4803–4810. doi: 10.1021/cg500961n. DOI

Kopel P., Travnicek Z., Kvitek L., Biler M., Pavlicek M., Sindelar Z., Marek J. Coordination compounds of nickel with trithiocyanuric acid. Part IV. Structure of Ni(pmdien)(ttcH) (pmdien = N,N,N′,N′,N′′-pentamethyldiethylenetriamine, ttcH3 = trithiocyanuric acid) Transit. Met. Chem. 2001;26:282–286. doi: 10.1023/A:1007129711379. DOI

Bienko A., Kopel P., Kizek R., Kruszynski R., Bienko D., Titis J., Boca R. Synthesis, crystal structure and magnetic properties of trithiocyanurate or thiodiacetate polynuclear Ni(II) and Co(II) complexes. Inorg. Chim. Acta. 2014;416:147–156. doi: 10.1016/j.ica.2014.03.009. DOI

Kopel P., Travnicek Z., Panchartkova R., Sindelar Z., Marek J. Coordination compounds of nickel with trithiocyanuric acid. J. Coord. Chem. 1998;44:205–215. doi: 10.1080/00958979808023073. DOI

Kopel P., Travnicek Z., Panchartkova R., Biler M., Marek J. Coordination compounds of nickel with trithiocyanuric acid. Part II. Crystal and molecular structure of Ni(taa)(ttcH) (taa = tris-(2-aminoethyl)amine, ttcH3 = trithiocyanuric acid) Transit. Met. Chem. 1999;24:239–243. doi: 10.1023/A:1006970510290. DOI

Marek J., Kopel P., Travnicek Z. Tris(1,10-phenanthroline)sodium 2,4,6-trimercapto-1,3,5-triazin-1-ide. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2003;59:M399–M401. doi: 10.1107/S0108270103017773. PubMed DOI

Kopel P., Travnicek Z., Zboril R., Marek J. Synthesis, X-ray and Mossbauer study of iron(II) complexes with trithiocyanuric acid (ttcH3): The X-ray structures of [Fe(bpy)3) (ttcH) 2bpy 7H2O and [Fe(phen)3](ttcH2)(ClO4) 2CH3OH 2H2O. Polyhedron. 2004;23:2193–2202. doi: 10.1016/S0277-5387(04)00274-8. DOI

Li W.R., Xie X.B., Shi Q.S., Duan S.S., Ouyang Y.S., Chen Y.B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals. 2011;24:135–141. doi: 10.1007/s10534-010-9381-6. PubMed DOI

Park H.J., Kim J.Y., Kim J., Lee J.H., Hahn J.S., Gu M.B., Yoon J. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 2009;43:1027–1032. doi: 10.1016/j.watres.2008.12.002. PubMed DOI

Kwakye-Awuah B., Williams C., Kenward M.A., Radecka I. Antimicrobial action and efficiency of silver-loaded zeolite X. J. Appl. Microbiol. 2008;104:1516–1524. doi: 10.1111/j.1365-2672.2007.03673.x. PubMed DOI

Matthews C.J., Leese T.A., Clegg W., Elsegood M.R.J., Horsburgh L., Lockhart J.C. A route to bis(benzimidazole) ligands with built-in asymmetry: Potential models of protein binding sites having histidines of different basicity. Inorg. Chem. 1996;35:7563–7571. doi: 10.1021/ic960777m. DOI

SMART (Version 5.63) and SAINT (Version 6.45), Area Detector Control and Integration Software. Bruker AXS Inc.; Madison, WI, USA: 2003.

Sheldrick G.M. SADABS Program for Empirical Absorption Correction for Area Detectors, Version 2.10. University of Gottingen; Gottingen, Germany: 2003.

Sheldrick G.M. A short history of SHELX. Acta Crystallogr. Sect. A. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI

Bautista-Trujillo G.U., Solorio-Rivera J.L., Renteria-Solorzano I., Carranza-German S.I., Bustos-Martinez J.A., Arteaga-Garibay R.I., Baizabal-Aguirre V.M., Cajero-Juarez M., Bravo-Patino A., Valdez-Alarcon J.J. Performance of culture media for the isolation and identification of Staphylococcus aureus from bovine mastitis. J. Med. Microbiol. 2013;62:369–376. doi: 10.1099/jmm.0.046284-0. PubMed DOI

Predrag S., Branislava K., Miodrag S., Biljana M.S., Suzana T., Natasa M.T., Tatjana B. Clinical importance and representation of toxigenic and non-toxigenic Clostridium difficile cultivated from stool samples of hospitalized patients. Braz. J. Microbiol. 2012;43:215–223. PubMed PMC

Bosch-Mestres J., Martin-Fernandez R.M., de Anta-Losada M.T.J. Comparative study of three culture media for detecting group B Streptococcus colonization in pregnant women. Enferm. Infec. Microbiol. Clin. 2003;21:346–349. doi: 10.1016/S0213-005X(03)72961-9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...