An Investigation on the Electrochemical Behavior and Antibacterial and Cytotoxic Activity of Nickel Trithiocyanurate Complexes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1401
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32290102
PubMed Central
PMC7179009
DOI
10.3390/ma13071782
PII: ma13071782
Knihovny.cz E-zdroje
- Klíčová slova
- cyclic voltammetry, nickel complexes, trimercaptotriazine, trithiocyanuric acid,
- Publikační typ
- časopisecké články MeSH
The electrochemical redox behavior of three trinuclear Ni(II) complexes [Ni3(abb)3(H2O)3(µ-ttc)](ClO4)3 (1), [Ni3(tebb)3(H2O)3(µ-ttc)](ClO4)3·H2O (2), and [Ni3(pmdien)3(µ-ttc)](ClO4)3 (3), where abb = 1-(1H-benzimidazol-2-yl)-N-(1H-benzimidazol-2-ylmethyl)methan-amine, ttcH3 = trithiocyanuric acid, tebb = 2-[2-[2-(1H-benzimidazol-2-yl)ethylsulfanyl]ethyl]-1H-benzimidazole, and pmdien = N,N,N',N″,N″-pentamethyldiethylenetriamine is reported. Cyclic voltammetry (CV) was applied for the study of the electrochemical behavior of these compounds. The results confirmed the presence of ttc and nickel in oxidation state +2 in the synthesized complexes. Moreover, the antibacterial properties and cytotoxic activity of complex 3 was investigated. All the complexes show antibacterial activity against Staphylococcus aureus and Escherichia coli to different extents. The cytotoxic activity of complex 3 and ttcNa3 were studied on G-361, HOS, K-562, and MCF7 cancer cell lines. It was found out that complex 3 possesses the cytotoxic activity against the tested cell lines, whereas ttcNa3 did not show any cytotoxic activity.
Zobrazit více v PubMed
Dongmei L., Yunbai L., Ping Y., Zhigang C. Chemistry of copper trimercaptotriazine (TMT) compounds and removal of copper from copper-ammine species by TMT. Appl. Organomet. Chem. 2006;20:246–253. doi: 10.1002/aoc.1049. DOI
Henke K. Chemistry and stability of precipitates from aqueous solutions of 2,4,6-trimercaptotriazine, trisodium salt, nonahydrate (TMT-55) and mercury (II) chloride. Water Res. 2000;34:3005–3013. doi: 10.1016/S0043-1354(00)00038-5. DOI
Matlock M.M., Henke K.R., Atwood D.A., Robertson D. Aqueous leaching properties and environmental implications of cadmium, lead and zinc trimercaptotriazine (TMT) compounds. Water Res. 2001;35:3649–3655. doi: 10.1016/S0043-1354(01)00091-4. PubMed DOI
Rosso V.W., Lust D.A., Bernot P.J., Grosso J.A., Modi S.P., Rusowicz A., Sedergran T.C., Simpson J.H., Srivastava S.K., Humora M.J., et al. Removal of Palladium from Organic Reaction Mixtures by Trimercaptotriazine. Org. Process. Res. Dev. 1997;1:311–314. doi: 10.1021/op970107f. DOI
Wang S., Li H., Chen X., Yang M., Qi Y. Selective adsorption of silver ions from aqueous solution using polystyrene-supported trimercaptotriazine resin. J. Environ. Sci. 2012;24:2166–2172. doi: 10.1016/S1001-0742(11)61052-8. PubMed DOI
Fu W., Huang Z. One-Pot Synthesis of a Two-Dimensional Porous Fe3O4/Poly(C3N3S3) Network Nanocomposite for the Selective Removal of Pb(II) and Hg(II) from Synthetic Wastewater. ACS Sustain. Chem. Eng. 2018;6:14785–14794. doi: 10.1021/acssuschemeng.8b03320. DOI
Gao S., Liu J., Luo J., Mamat X., Sambasivam S., Li Y., Hu X., Wågberg T., Hu G. Selective voltammetric determination of Cd(II) by using N,S-codoped porous carbon nanofibers. Microchim. Acta. 2018;185:282. doi: 10.1007/s00604-018-2818-2. PubMed DOI
Zhu R., Zhang Y., Fang X., Cui X., Wang J., Yue C., Fang W., Zhao H., Li Z.X., Yue C. In situ sulfur-doped graphitic carbon nitride nanosheets with enhanced electrogenerated chemiluminescence used for sensitive and selective sensing of l-cysteine. J. Mater. Chem. B. 2019;7:2320–2329. doi: 10.1039/C9TB00301K. PubMed DOI
Cecconi F., Ghilardi C.A., Midollini S., Orlandini A. Organomercury derivatives of the 2,4,6-trimercaptotriazine (H3TMT). X-ray crystal structure of (HgMe)3(TMT) J. Organomet. Chem. 2002;645:101–104. doi: 10.1016/S0022-328X(01)01372-9. DOI
Mahon M.F., Molloy K.C., Venter M.M., Haiduc I. Unsymmetrically-substituted 2,4,6-trimercaptotriazine: Supramolecular self-assembly through C S⋯H N hydrogen bonds in the crystal structures of C3N3S3H2Na·3H2O and C3N3S3H2Cu(PPh3)2. Inorg. Chim. Acta. 2003;348:75–81. doi: 10.1016/S0020-1693(02)01468-8. DOI
Tzeng B.-C., Che C.-M., Peng S.-M. Luminescent gold(i) supermolecules with trithiocyanuric acid. Crystal structure, spectroscopic and photophysical properties. Chem. Commun. 1997:1771–1772. doi: 10.1039/a703891g. PubMed DOI
Chan C.-K., Cheung K.-K., Che C.-M. Structure and spectroscopic properties of a luminescent inorganic cyclophane from self-assembly of copper(I) and two ligand components. Chem. Commun. 1996:227. doi: 10.1039/cc9960000227. DOI
Kettle S.F.A. Physical Inorganic Chemistry. Springer Science and Business Media LLC; Berlin, Germany: 1996. Crystal field theory of transition metal complexes; pp. 121–155.
Lawrance G.A. Introduction to Coordination Chemistry. Wiley; Chichester, UK: 2010.
Kopel P., Travnicek Z., Panchártková R., Ŝindelá[Rcirc] Z., Marek J. Coordination compounds of nickel with trithiocyanuric acid. J. Co-ord. Chem. 1998;44:205–215. doi: 10.1080/00958979808023073. DOI
Kopel P., Travnicek Z., Kvítek L., Biler M., Pavlíček M., Šindelář Z., Marek J. Coordination compounds of nickel with trithiocyanuric acid. Part IV. Structure of [Ni(pmdien)(ttcH)] (pmdien = N,N,N′,N′,N″-pentamethyldiethylenetriamine, ttcH3 = trithiocyanuric acid) Transit. Met. Chem. 2001;26:282–286. doi: 10.1023/A:1007129711379. DOI
Kopel P., Trávníček Z., Kvítek L., Panchártková R., Biler M., Marek J., Nádvorník M. Coordination compounds of nickel with trithiocyanuric acid. Polyhedron. 1999;18:1779–1784. doi: 10.1016/S0277-5387(99)00053-4. DOI
Kopel P., Travnicek Z., Panchártková R., Biler M., Marek J. Coordination compounds of nickel with trithiocyanuric acid. Part II. Crystal and molecular structure of [Ni(taa)(ttcH)] (taa=tris-(2-aminoethyl)amine, ttcH3=trithiocyanuric acid) Transit. Met. Chem. 1999;24:239–243. doi: 10.1023/A:1006970510290. DOI
Kopel P., Travnicek Z., Kvítek L., Černošek Z., Wrzeszcz G., Marek J. Synthesis and Characterization of Cu(II), Co(II) and Ni(II) Complexes of Trithiocyanuric Acid: The Structure of {N,N′-Bis(3-Aminopropyl)-1,3-Propanediamine}-(Trithiocyanurato)Nickel(II) J. Co-ord. Chem. 2003;56:1–11. doi: 10.1080/0095897021000039034. DOI
Bieńko A., Kopel P., Kizek R., Kruszyński R., Bieńko D., Titis J., Boca R. Synthesis, crystal structure and magnetic properties of trithiocyanurate or thiodiacetate polynuclear Ni(II) and Co(II) complexes. Inorg. Chim. Acta. 2014;416:147–156. doi: 10.1016/j.ica.2014.03.009. DOI
Dasari S., Tchounwou P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014;740:364–378. doi: 10.1016/j.ejphar.2014.07.025. PubMed DOI PMC
Alcindor T., Beauger N. Oxaliplatin: A review in the era of molecularly targeted therapy. Curr. Oncol. 2011;18:18–25. doi: 10.3747/co.v18i1.708. PubMed DOI PMC
Mármol I., Quero J., Rodríguez-Yoldi M.J., Cerrada E. Gold as a Possible Alternative to Platinum-Based Chemotherapy for Colon Cancer Treatment. Cancers. 2019;11:780. doi: 10.3390/cancers11060780. PubMed DOI PMC
Page S., Wheeler R. Ruthenium compounds as anticancer agents. Educ. Chem. 2012;49:26.
Kopel P., Doležal K., Machala L., Langer V. Synthesis, characterization and screening of biological activity of Zn(II), Fe(II) and Mn(II) complexes with trithiocyanuric acid. Polyhedron. 2007;26:1583–1589. doi: 10.1016/j.poly.2006.11.022. DOI
Kopel P., Mrozinski J., Doležal K., Langer V., Boča R., Bieńko A., Pochaba A. Ferromagnetic Properties of a Trinuclear Nickel(II) Complex with a Trithiocyanurate Bridge. Eur. J. Inorg. Chem. 2009;2009:5475–5482. doi: 10.1002/ejic.200900617. DOI
Kopel P., Wawrzak D., Langer V., Dolezelikova K., Chudobova D., Vesely R., Adam V., Kizek R. Biological Activity and Molecular Structures of Bis(benzimidazole) and Trithiocyanurate Complexes. Mol. 2015;20:10360–10376. doi: 10.3390/molecules200610360. PubMed DOI PMC
Tesarova B., Charousova M., Dostalova S., Bienko A., Kopel P., Kruszyński R., Hynek D., Michalek P., Eckschlager T., Stiborová M., et al. Folic acid-mediated re-shuttling of ferritin receptor specificity towards a selective delivery of highly cytotoxic nickel(II) coordination compounds. Int. J. Boil. Macromol. 2019;126:1099–1111. doi: 10.1016/j.ijbiomac.2018.12.128. PubMed DOI
Macrae C., Bruno I.J., Chisholm J.A., Edgington P.R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., Van De Streek J., Wood P.A. Mercury CSD 2.0–New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008;41:466–470. doi: 10.1107/S0021889807067908. DOI
Guan-Ping J., Bo Y., Zhen-Xin C., Xiu-Yu C., Ming Z., Chang Z. Electrochemical behaviors and determination of melamine in neutral and acid aqueous media. J. Solid State Electrochem. 2010;15:2653–2659. doi: 10.1007/s10008-010-1249-8. DOI
Krüger H.-J., Peng G., Holm R.H. Low-potential nickel(III,II) complexes: New systems based on tetradentate amidate-thiolate ligands and the influence of ligand structure on potentials in relation to the nickel site in [NiFe]-hydrogenases. Inorg. Chem. 1991;30:734–742. doi: 10.1021/ic00004a025. DOI
Singh J., Hundal G., Gupta R. Studies on Nickel(II) Complexes with Amide-Based Ligands: Syntheses, Structures, Electrochemistry and Oxidation Chemistry. Eur. J. Inorg. Chem. 2008;2008:2052–2063. doi: 10.1002/ejic.200701122. DOI
Anacona J.R., Mago K., Camus J. Antibacterial activity of transition metal complexes with a tridentate NNO amoxicillin derived Schiff base. Synthesis and characterization. Appl. Organomet. Chem. 2018;32:e4374. doi: 10.1002/aoc.4374. DOI
Santos A.F., Brotto D.F., Favarin L.R., Cabeza N.A., Andrade G.R., Batistote M., Cavalheiro A.A., Neves A., Rodrigues D.C., Dos Anjos A. Study of the antimicrobial activity of metal complexes and their ligands through bioassays applied to plant extracts. Rev. Bras. Farm. 2014;24:309–315. doi: 10.1016/j.bjp.2014.07.008. DOI
Kopel P., Cermakova S., Dolezal K., Kalinska B., Bienko A., Mrozinski J. Synthesis and properties of a trinuclear copper(II) complex with trithiocyanurate bridge. Pol. J. Chem. 2007;81:327–335.
Kopel P., Kameníček J., Petříček V., Kurečka A., Kalinska B., Mrozinski J.J.P. Syntheses and study on nickel and copper complexes with 1, 3, 5-benzenetricarboxylic acid. Crystal and molecular structure of [Cu3(mdpta)3(btc)](ClO4) 3·4H2O. Polyhedron. 2007;26:535–542. doi: 10.1016/j.poly.2006.08.010. DOI
Sercombe L., Veerati T., Moheimani F., Wu S., Sood A.K., Hua S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015;6:215. doi: 10.3389/fphar.2015.00286. PubMed DOI PMC
Dostalova S., Vasickova K., Hynek D., Krizkova S., Richtera L., Vaculovicova M., Eckschlager T., Stiborová M., Heger Z., Adam V. Apoferritin as an ubiquitous nanocarrier with excellent shelf life. Int. J. Nanomed. 2017;12:2265–2278. doi: 10.2147/IJN.S130267. PubMed DOI PMC