An Investigation on the Electrochemical Behavior and Antibacterial and Cytotoxic Activity of Nickel Trithiocyanurate Complexes

. 2020 Apr 10 ; 13 (7) : . [epub] 20200410

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32290102

Grantová podpora
LO1401 Ministerstvo Školství, Mládeže a Tělovýchovy

The electrochemical redox behavior of three trinuclear Ni(II) complexes [Ni3(abb)3(H2O)3(µ-ttc)](ClO4)3 (1), [Ni3(tebb)3(H2O)3(µ-ttc)](ClO4)3·H2O (2), and [Ni3(pmdien)3(µ-ttc)](ClO4)3 (3), where abb = 1-(1H-benzimidazol-2-yl)-N-(1H-benzimidazol-2-ylmethyl)methan-amine, ttcH3 = trithiocyanuric acid, tebb = 2-[2-[2-(1H-benzimidazol-2-yl)ethylsulfanyl]ethyl]-1H-benzimidazole, and pmdien = N,N,N',N″,N″-pentamethyldiethylenetriamine is reported. Cyclic voltammetry (CV) was applied for the study of the electrochemical behavior of these compounds. The results confirmed the presence of ttc and nickel in oxidation state +2 in the synthesized complexes. Moreover, the antibacterial properties and cytotoxic activity of complex 3 was investigated. All the complexes show antibacterial activity against Staphylococcus aureus and Escherichia coli to different extents. The cytotoxic activity of complex 3 and ttcNa3 were studied on G-361, HOS, K-562, and MCF7 cancer cell lines. It was found out that complex 3 possesses the cytotoxic activity against the tested cell lines, whereas ttcNa3 did not show any cytotoxic activity.

Zobrazit více v PubMed

Dongmei L., Yunbai L., Ping Y., Zhigang C. Chemistry of copper trimercaptotriazine (TMT) compounds and removal of copper from copper-ammine species by TMT. Appl. Organomet. Chem. 2006;20:246–253. doi: 10.1002/aoc.1049. DOI

Henke K. Chemistry and stability of precipitates from aqueous solutions of 2,4,6-trimercaptotriazine, trisodium salt, nonahydrate (TMT-55) and mercury (II) chloride. Water Res. 2000;34:3005–3013. doi: 10.1016/S0043-1354(00)00038-5. DOI

Matlock M.M., Henke K.R., Atwood D.A., Robertson D. Aqueous leaching properties and environmental implications of cadmium, lead and zinc trimercaptotriazine (TMT) compounds. Water Res. 2001;35:3649–3655. doi: 10.1016/S0043-1354(01)00091-4. PubMed DOI

Rosso V.W., Lust D.A., Bernot P.J., Grosso J.A., Modi S.P., Rusowicz A., Sedergran T.C., Simpson J.H., Srivastava S.K., Humora M.J., et al. Removal of Palladium from Organic Reaction Mixtures by Trimercaptotriazine. Org. Process. Res. Dev. 1997;1:311–314. doi: 10.1021/op970107f. DOI

Wang S., Li H., Chen X., Yang M., Qi Y. Selective adsorption of silver ions from aqueous solution using polystyrene-supported trimercaptotriazine resin. J. Environ. Sci. 2012;24:2166–2172. doi: 10.1016/S1001-0742(11)61052-8. PubMed DOI

Fu W., Huang Z. One-Pot Synthesis of a Two-Dimensional Porous Fe3O4/Poly(C3N3S3) Network Nanocomposite for the Selective Removal of Pb(II) and Hg(II) from Synthetic Wastewater. ACS Sustain. Chem. Eng. 2018;6:14785–14794. doi: 10.1021/acssuschemeng.8b03320. DOI

Gao S., Liu J., Luo J., Mamat X., Sambasivam S., Li Y., Hu X., Wågberg T., Hu G. Selective voltammetric determination of Cd(II) by using N,S-codoped porous carbon nanofibers. Microchim. Acta. 2018;185:282. doi: 10.1007/s00604-018-2818-2. PubMed DOI

Zhu R., Zhang Y., Fang X., Cui X., Wang J., Yue C., Fang W., Zhao H., Li Z.X., Yue C. In situ sulfur-doped graphitic carbon nitride nanosheets with enhanced electrogenerated chemiluminescence used for sensitive and selective sensing of l-cysteine. J. Mater. Chem. B. 2019;7:2320–2329. doi: 10.1039/C9TB00301K. PubMed DOI

Cecconi F., Ghilardi C.A., Midollini S., Orlandini A. Organomercury derivatives of the 2,4,6-trimercaptotriazine (H3TMT). X-ray crystal structure of (HgMe)3(TMT) J. Organomet. Chem. 2002;645:101–104. doi: 10.1016/S0022-328X(01)01372-9. DOI

Mahon M.F., Molloy K.C., Venter M.M., Haiduc I. Unsymmetrically-substituted 2,4,6-trimercaptotriazine: Supramolecular self-assembly through C S⋯H N hydrogen bonds in the crystal structures of C3N3S3H2Na·3H2O and C3N3S3H2Cu(PPh3)2. Inorg. Chim. Acta. 2003;348:75–81. doi: 10.1016/S0020-1693(02)01468-8. DOI

Tzeng B.-C., Che C.-M., Peng S.-M. Luminescent gold(i) supermolecules with trithiocyanuric acid. Crystal structure, spectroscopic and photophysical properties. Chem. Commun. 1997:1771–1772. doi: 10.1039/a703891g. PubMed DOI

Chan C.-K., Cheung K.-K., Che C.-M. Structure and spectroscopic properties of a luminescent inorganic cyclophane from self-assembly of copper(I) and two ligand components. Chem. Commun. 1996:227. doi: 10.1039/cc9960000227. DOI

Kettle S.F.A. Physical Inorganic Chemistry. Springer Science and Business Media LLC; Berlin, Germany: 1996. Crystal field theory of transition metal complexes; pp. 121–155.

Lawrance G.A. Introduction to Coordination Chemistry. Wiley; Chichester, UK: 2010.

Kopel P., Travnicek Z., Panchártková R., Ŝindelá[Rcirc] Z., Marek J. Coordination compounds of nickel with trithiocyanuric acid. J. Co-ord. Chem. 1998;44:205–215. doi: 10.1080/00958979808023073. DOI

Kopel P., Travnicek Z., Kvítek L., Biler M., Pavlíček M., Šindelář Z., Marek J. Coordination compounds of nickel with trithiocyanuric acid. Part IV. Structure of [Ni(pmdien)(ttcH)] (pmdien = N,N,N′,N′,N″-pentamethyldiethylenetriamine, ttcH3 = trithiocyanuric acid) Transit. Met. Chem. 2001;26:282–286. doi: 10.1023/A:1007129711379. DOI

Kopel P., Trávníček Z., Kvítek L., Panchártková R., Biler M., Marek J., Nádvorník M. Coordination compounds of nickel with trithiocyanuric acid. Polyhedron. 1999;18:1779–1784. doi: 10.1016/S0277-5387(99)00053-4. DOI

Kopel P., Travnicek Z., Panchártková R., Biler M., Marek J. Coordination compounds of nickel with trithiocyanuric acid. Part II. Crystal and molecular structure of [Ni(taa)(ttcH)] (taa=tris-(2-aminoethyl)amine, ttcH3=trithiocyanuric acid) Transit. Met. Chem. 1999;24:239–243. doi: 10.1023/A:1006970510290. DOI

Kopel P., Travnicek Z., Kvítek L., Černošek Z., Wrzeszcz G., Marek J. Synthesis and Characterization of Cu(II), Co(II) and Ni(II) Complexes of Trithiocyanuric Acid: The Structure of {N,N′-Bis(3-Aminopropyl)-1,3-Propanediamine}-(Trithiocyanurato)Nickel(II) J. Co-ord. Chem. 2003;56:1–11. doi: 10.1080/0095897021000039034. DOI

Bieńko A., Kopel P., Kizek R., Kruszyński R., Bieńko D., Titis J., Boca R. Synthesis, crystal structure and magnetic properties of trithiocyanurate or thiodiacetate polynuclear Ni(II) and Co(II) complexes. Inorg. Chim. Acta. 2014;416:147–156. doi: 10.1016/j.ica.2014.03.009. DOI

Dasari S., Tchounwou P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014;740:364–378. doi: 10.1016/j.ejphar.2014.07.025. PubMed DOI PMC

Alcindor T., Beauger N. Oxaliplatin: A review in the era of molecularly targeted therapy. Curr. Oncol. 2011;18:18–25. doi: 10.3747/co.v18i1.708. PubMed DOI PMC

Mármol I., Quero J., Rodríguez-Yoldi M.J., Cerrada E. Gold as a Possible Alternative to Platinum-Based Chemotherapy for Colon Cancer Treatment. Cancers. 2019;11:780. doi: 10.3390/cancers11060780. PubMed DOI PMC

Page S., Wheeler R. Ruthenium compounds as anticancer agents. Educ. Chem. 2012;49:26.

Kopel P., Doležal K., Machala L., Langer V. Synthesis, characterization and screening of biological activity of Zn(II), Fe(II) and Mn(II) complexes with trithiocyanuric acid. Polyhedron. 2007;26:1583–1589. doi: 10.1016/j.poly.2006.11.022. DOI

Kopel P., Mrozinski J., Doležal K., Langer V., Boča R., Bieńko A., Pochaba A. Ferromagnetic Properties of a Trinuclear Nickel(II) Complex with a Trithiocyanurate Bridge. Eur. J. Inorg. Chem. 2009;2009:5475–5482. doi: 10.1002/ejic.200900617. DOI

Kopel P., Wawrzak D., Langer V., Dolezelikova K., Chudobova D., Vesely R., Adam V., Kizek R. Biological Activity and Molecular Structures of Bis(benzimidazole) and Trithiocyanurate Complexes. Mol. 2015;20:10360–10376. doi: 10.3390/molecules200610360. PubMed DOI PMC

Tesarova B., Charousova M., Dostalova S., Bienko A., Kopel P., Kruszyński R., Hynek D., Michalek P., Eckschlager T., Stiborová M., et al. Folic acid-mediated re-shuttling of ferritin receptor specificity towards a selective delivery of highly cytotoxic nickel(II) coordination compounds. Int. J. Boil. Macromol. 2019;126:1099–1111. doi: 10.1016/j.ijbiomac.2018.12.128. PubMed DOI

Macrae C., Bruno I.J., Chisholm J.A., Edgington P.R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., Van De Streek J., Wood P.A. Mercury CSD 2.0–New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008;41:466–470. doi: 10.1107/S0021889807067908. DOI

Guan-Ping J., Bo Y., Zhen-Xin C., Xiu-Yu C., Ming Z., Chang Z. Electrochemical behaviors and determination of melamine in neutral and acid aqueous media. J. Solid State Electrochem. 2010;15:2653–2659. doi: 10.1007/s10008-010-1249-8. DOI

Krüger H.-J., Peng G., Holm R.H. Low-potential nickel(III,II) complexes: New systems based on tetradentate amidate-thiolate ligands and the influence of ligand structure on potentials in relation to the nickel site in [NiFe]-hydrogenases. Inorg. Chem. 1991;30:734–742. doi: 10.1021/ic00004a025. DOI

Singh J., Hundal G., Gupta R. Studies on Nickel(II) Complexes with Amide-Based Ligands: Syntheses, Structures, Electrochemistry and Oxidation Chemistry. Eur. J. Inorg. Chem. 2008;2008:2052–2063. doi: 10.1002/ejic.200701122. DOI

Anacona J.R., Mago K., Camus J. Antibacterial activity of transition metal complexes with a tridentate NNO amoxicillin derived Schiff base. Synthesis and characterization. Appl. Organomet. Chem. 2018;32:e4374. doi: 10.1002/aoc.4374. DOI

Santos A.F., Brotto D.F., Favarin L.R., Cabeza N.A., Andrade G.R., Batistote M., Cavalheiro A.A., Neves A., Rodrigues D.C., Dos Anjos A. Study of the antimicrobial activity of metal complexes and their ligands through bioassays applied to plant extracts. Rev. Bras. Farm. 2014;24:309–315. doi: 10.1016/j.bjp.2014.07.008. DOI

Kopel P., Cermakova S., Dolezal K., Kalinska B., Bienko A., Mrozinski J. Synthesis and properties of a trinuclear copper(II) complex with trithiocyanurate bridge. Pol. J. Chem. 2007;81:327–335.

Kopel P., Kameníček J., Petříček V., Kurečka A., Kalinska B., Mrozinski J.J.P. Syntheses and study on nickel and copper complexes with 1, 3, 5-benzenetricarboxylic acid. Crystal and molecular structure of [Cu3(mdpta)3(btc)](ClO4) 3·4H2O. Polyhedron. 2007;26:535–542. doi: 10.1016/j.poly.2006.08.010. DOI

Sercombe L., Veerati T., Moheimani F., Wu S., Sood A.K., Hua S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015;6:215. doi: 10.3389/fphar.2015.00286. PubMed DOI PMC

Dostalova S., Vasickova K., Hynek D., Krizkova S., Richtera L., Vaculovicova M., Eckschlager T., Stiborová M., Heger Z., Adam V. Apoferritin as an ubiquitous nanocarrier with excellent shelf life. Int. J. Nanomed. 2017;12:2265–2278. doi: 10.2147/IJN.S130267. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...